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ABSTRACT

This contribution describes a step-wise source counting algo-
rithm to determine the number of speakers in an offline sce-
nario. Each speaker is identified by a variational expectation
maximization (VEM) algorithm for complex Watson mixture
models and therefore directly yields beamforming vectors for
a subsequent speech separation process. An observation se-
lection criterion is proposed which improves the robustness
of the source counting in noise. The algorithm is compared to
an alternative VEM approach with Gaussian mixture models
based on directions of arrival and shown to deliver improved
source counting accuracy. The article concludes by extending
the offline algorithm towards a low-latency online estimation
of the number of active sources from the streaming input data.

Index Terms— Blind source separation, Bayes methods,
Directional statistics, Number of speakers, Speaker diariza-
tion

1. INTRODUCTION

Blind speech separation (BSS) algorithms are designed to im-
prove signal enhancement metrics. While these algorithms in
general consider the source locations and the source signals
to be unknown, they do generally assume knowledge of the
number of speakers to be found [1, 2]. Although the number
of sources is unknown in almost every practical application,
relatively few articles are concerned with estimating the num-
ber of active sources for BSS algorithms.

In [3], time frequency (tf) slots are identified first, which are
presumably dominated by a single speaker. A histogram of
directions of arrival (DOA) is computed from these slots and
the number of sources is determined by counting the number
of significant peaks.

The authors of [4] employ a variational Expectation Max-
imization (VEM) algorithm to complex Gaussian Mixture
Models (GMM), which model the distribution of the micro-
phone array signals in the Short Time Fourier Transform
(STFT) domain. Starting from an assumed maximum num-
ber of sources the VEM is iterated after which only as many
mixture weights remain significantly larger than zero as there
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are simultaneously active sources. Since this is done for each
frequency bin separately, the permutation problem has to be
solved afterwards.

In [5] the permutation problem is avoided by phase and fre-
quency normalization. As a result the DOAs of a speaker
form a single cluster, irrespective of the considered frequency
bin. The DOAs are modeled by a real-valued GMM and a
VEM is run, which reveals, after a sufficiently large number
of iterations, the number of active speakers by the number of
mixture weights remaining significantly larger than zero.

In [6] we introduced a source counting algorithm which
employs the vector of microphone signals directly, rather
than estimating DOAs from it. After phase, frequency and
norm normalization, the direction vectors form clusters on
the complex-valued unit hypersphere and were modeled by
a complex Watson Mixture Model (cWMM). A VEM algo-
rithm was derived which estimated the posterior distributions
of the Watson mode vectors, which can be used for beam-
forming and source separation. Furthermore, the number of
active speakers was determined by a step-wise source count-
ing algorithm which is reminiscent of successive interference
cancellation in multi-user digital communications: after iden-
tifying a source, its contribution to the microphone signal
was deemphasized before searching for the next source. This
process was repeated until a maximum number of potential
sources was reached. The final number of sources was then
determined by thresholding the mixture weights and concen-
tration parameters of the cWMM and enforcing a minimum
angular distance between sources.

In this contribution we present an extension of this work
with respect to the following aspects: First, an improved cri-
terion is presented for emphasizing time-frequency bins that
are most likely dominated by a single source. This results in
increased robustness to additive noise compared to [6]. Fur-
thermore, we show that reliable source counting can be done
by either thresholding the mixture weights or the concentra-
tion parameters, with no need to require both. The experi-
ments demonstrate that this approach outperforms the DOA-
based VEM on GMMs. Finally, we propose an algorithm for
online source counting, which allows the estimation of the
number of simultaneously active sources on a per-frame basis
with low latency.

The paper is organized as follows. In the next section we



describe our signal model, followed by a description of the
cWMM in Section 3. The offline and online source count-
ing algorithms are presented in Sections 4 and 5, respectively.
Experiments are reported in Sections 6 and 7 and conclusions
are drawn in Section 8.

2. SIGNAL MODEL

Consider a convolutive mixture model of K independent
source signals Sk(t, f) captured by D microphones yielding
the sensor signals Xd(t, f) in STFT domain [7]:

X(t, f) =

K∑
k=1

Hk(f)Sk(t, f) + N(t, f), (1)

where X = (X1, . . . , XD)
T is the vector of sensor sig-

nals, Hk = (H1,k, . . . ,HD,k)
T is the vector of multiplica-

tive transfer functions associated to source k, and N =
(N1, . . . , ND)

T is the noise vector, with time frames t from
1 to T and frequency bins f from 1 to F .

According to the normalized observation vector approach,
vectors X are phase normalized, frequency normalized and
unit-norm normalized selecting an arbitrary sensor signal as
reference, e.g., X1(t, f) [8]:

X̃d(t, f) = |Xd(t, f)| exp
(
j
arg (Xd(t, f)X

∗
1 (t, f))

2frealc−1dmax

)
,

Y(t, f) = X̃(t, f)/‖X̃(t, f)‖,
(2)

where freal = f/(LTs) is the frequency corresponding to fre-
quency index f , FFT-length L and sampling rate 1/Ts. The
constant c is the speed of sound and dmax is the maximum dis-
tance between the sensors. The number of used frequencies
F is set to L/2− 1.

The frequency normalization allows to increase the num-
ber of observations per estimation step. Rather than treating
each frequency bin separately, all frequency bins can be used
jointly in the algorithm. This is particularly beneficial for on-
line source counting, since now even in a single time frame
there are enough observations to carry out a block EM algo-
rithm.

Note that Equation (2) maintains component-wise ampli-
tude differences and the frequency normalization assumes a
linear frequency dependency for H(f).

3. STATISTICAL MODEL

Since the extracted features are vectors on the complex D-
dimensional unit hypersphere, a probability density function
able to model clusters in this domain is desirable. Tran Vu et
al. proposed to model these observations by a cWMM [1]:

p(Y|C) =
T∏
t=1

F∏
f=1

K+1∏
k=1

(
1

cW(κk)
eκk|W

H
kY(t,f)|2

)ck(t,f)
. (3)

Implying sparseness of the source signals ck=l(t, f) = 1 and
ck 6=l(t, f) = 0 indicates that the l-th speaker is dominant in
the given tf slot (t, f). The additional componentK+1 mod-
els noise only slots.

In (3), cW(κk) is a normalization constant given by

c−1W (κk) =
(D − 1)!

2πDM(1, D, κk)
, (4)

where M( · ) is the confluent hypergeometric function [9].
The choice of a cWMM can be justified as follows: Firstly,

conventional approaches reduce the feature space [5] or ap-
proximate distributions on the complex hypersphere by a
GMM on a planar projection [2]. Using a cWMM maintains
all spatial information contained in the signal. Secondly, an
a priori distribution for the complex Watson mode vectors
is known. Thirdly, the distance measure WHY resembles
a spatial correlation and, thus, fits to the beamforming con-
cept [1].

4. SOURCE COUNTING IN AN OFFLINE SCENARIO

At first, tf slots which are most likely dominated by a sin-
gle speaker and are thus well suited for source counting are
emphasized. These slots are identified by a power based cri-
terion similar to the one in [3]. We employ a quantile instead
of applying a power threshold to obtain a fixed number of ob-
servations independent of the signals themselves:

P = quantile(XH(t, f)X(t, f), q), (5)

where q ∈ [0, 1]. Subsequently, observation weights are de-
fined:

A(1)(t, f) =

{
1
2 + 1

2a, XH(t, f)X(t, f) > P,
1
2 −

1
2a, XH(t, f)X(t, f) < P,

(6)

where a ∈ [0, 1[ controls how much tf slots, which are con-
sidered to be dominated by a single speaker, are emphasized
over others.

EM algorithms are known to be very sensitive with respect
to initial values. To relax this sensitivity, the mode vector
W of the most dominant source is found by employing a
VEM algorithm for a cWMM with two mixture components.
One mixture component is intended to model the dominant
speaker while the second component is fixed to a uniform dis-
tribution on the complex hypershere and captures noise and
all remaining speakers. Motivated by the use of uninforma-
tive priors for model complexity estimation for GMMs in [10]
a uninformative Bingham prior is used for the speaker com-
ponent.

The update equations for the cWMM are given in brief. A
more detailed derivation can be found in [6]. The observa-
tion weightsA(ν)(t, f) are incorporated into the VEM heuris-
tically. At first the class responsibilities for the dominant



speaker and the noise are updated:

ln γ1(t, f) = lnA(ν)(t, f)− lnM(1, D, κ1)

+ κ1 EW1

{
WH

1 Y(t, f)YH(t, f)W1

}
+ Eπ1

{lnπ1}+ const.

ln γ2(t, f) = ln(1−A(ν)(t, f))− lnM(1, D, 0)

+ Eπ2
{lnπ2}+ const.

(7)

Then the distributions are refined by

B
(i)
k = κ

(i−1)
k N

(i)
k Φ

(i)
Y Y,k + B0,k, (8)

Φ
(i)
Y Y,k =

1

N
(i)
k

T∑
t=1

F∑
f=1

γ
(i)
k (t, f)Y(t, f)YH(t, f), (9)

π
(i)
k = N

(i)
k /

K+1∑
k=1

N
(i)
k with N (i)

k =

T∑
t=1

F∑
f=1

γ
(i)
k (t, f), (10)

M(2, D + 1, κ
(i)
k )

D ·M(1, D, κ
(i)
k )

= EWk

{
WH

k Φ
(i)
Y Y,kWk

}
. (11)

After successfully estimating the parameters of the cWMM
for the first speaker, the mode vector W1 for this speaker is
calculated as the principal component of the parameter matrix
B1 of the a posteriori Bingham distribution.

Inspired by the successive interference cancellation method
used in multi-user digital communications the influence of
the identified dominant source on the microphone signal is
removed by reweighting each observation depending on its
distance to the already found mode vector [11]:

A(ν+1)(t, f)=A(ν)(t, f)

(
1−eκRe

(
|ŴH

νY(t,f)|2−1
))
, (12)

where κRe governs the concentration of the reweighting func-
tion.

The searching and reweighting is then repeated until a max-
imum number of expected speakers νmax is reached. We
now compute the angular distance between mode vectors and
determine the number of active speakers by thresholding ei-
ther the mixture weights πν or the concentration parameters
κν , while at the same time requiring that the scalar product
WH

ν Wν′ between mode vectors is below a threshold sTh.
This is equal to requiring a minimal angular distance between
mode vectors.

5. SOURCE COUNTING IN AN ONLINE SCENARIO

In the online scenario we maintain a set B of Bingham matri-
ces for already found but possibly inactive speakers, which is
reviewed in every frame. At the beginning, the set is initial-
ized with the empty set.

For each frame, at first, observation weights are calculated
according to Equation (6). Secondly, if the set B is not empty,

Quantile
Criterion B = { }

Main VEM:
updates B,

yields κk(t), πk(t)
for counting

No Re-weighting
for each Bk in B

Seeker VEM:
yields B1, κ1, π1

Conditions
fulfilled? Add B1 to B

Yes

Yes

NoContinue with
next frame

Start

Fig. 1: Flowchart of the online algorithm.

the main VEM algorithm updates each Bk in B and estimates
κk(t) and πk(t) for each frame. These estimates are thresh-
olded for a frame based speaker activity decision similar as
in the offline counting algorithm. Thirdly, the observation
weights are reweighted according to Equation (12). Finally,
a seeker VEM searches for possible new speakers in the re-
maining signal and adds the corresponding a posteriori Bing-
ham matrix to the set B, if the threshold conditions are ful-
filled.

To summarize, a decision is made on a frame-by-frame ba-
sis. The seeker VEM needs one frame to find a candidate for a
new speaker. The main VEM needs another frame to validate
the speaker, amounting to an overall latency of two frames.

6. RESULTS FOR THE OFFLINE SCENARIO

In a simulation environment, up to six speakers are placed
on a circle of radius 1m around an array of D = 3 omni-
directional microphones arranged in a triangular shape with
2 cm edge length. The sources and the sensor array share the
same height of 1.5m.

Speech samples of 5 s length and sampling frequency of
16 kHz are chosen at random from the training utterances of
the TIMIT database [12]. Speech samples of zero to up to six
speakers without speech pauses are convolved with impulse
responses of a simulated room of dimension 4m× 4m× 3m
using the image method [13] and mixed.

An STFT with frame size 1024 and a frame shift of 256 is
applied to each sensor signal. The maximum sensor distance
is set to dmax = 1.2 · 2 cm to increase the distance of peri-
odic repetitions of clusters in the feature space. The emphasis
parameter is set to a = 0.6 and the fraction of deemphasized
observations is set to q = 0.9. The reweighting factor in equa-
tion (12) is set to κRe = 20 and maximum number of expected
speakers is νmax = 8. The SNR for white Gaussian noise is
varied from 10 to 30 dB.

The parameters and initial values for the DOA-based count-
ing algorithm, which is given for comparison, are taken di-
rectly from the corresponding publication [5].

Figure 2 compares the proposed step-wise deletion algo-
rithm, using a threshold on the mixture weights or a threshold
on the concentration parameters, with the DOA-based algo-
rithm [5]. The proposed algorithm performs arguably well for
up to five speakers and high SNR values, whereas the DOA-
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Fig. 2: Comparison of the proposed counting algorithm with
the DOA-based algorithm with respect to different thresholds
and SNR conditions.
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Fig. 3: Comparison of the proposed counting algorithm with
the DOA-based algorithm with respect to reverberation time
for SNR = 20 dB and πTh = 0.0033, sTh = 0.65.

based algorithm already shows limited performance for more
than three speakers. Both algorithms struggle with an SNR of
10 dB. The DOA-based algorithm is hardly capable of finding
more than one speaker at all.

The overall counting accuracy of the proposed algorithm
is 84.0% when thresholding the mixture weights and 83.5%
when thresholding the concentration parameters, while the
DOA-based algorithm achieved 48.6% accuracy.

Figure 3 shows the counting performance as a function of
the room reverberation time. Due to the fact that both al-
gorithms rely on the assumption of a linear phase of the im-
pulse responses and both algorithms perform a frequency nor-
malization, their counting accuracy declines already for small
impulse response lengths. Working on each frequency bin in-
dependently may overcome this shortcoming, however at the
price of introducing the permutation problem.

7. RESULTS FOR THE ONLINE SCENARIO

A ten second speech activity pattern for three speakers was
generated containing different source activity situations, see
Fig. 4. In contrast to the offline scenario, individual speakers
stop and restart speaking. The thresholds are set to κTh = 1,
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Fig. 4: Speaker activity estimation of the proposed online al-
gorithm in comparison to the images and a VAD on images
with an SNR of 20 dB.

πTh = 0.0025 and sTh = 0.7.
As a reference, a voice activity detection (VAD) is calcu-

lated on the noise-free and unmixed speech signals to obtain
ground truth speaker activity information.

The estimated active speakers are depicted in green. The
first active speaker is detected on time. Subsequent new
speaker onsets are detected with a small delay which in-
creases with the number of simultaneously active speakers.
Already identified speakers are found much faster. Note that
the proposed algorithm is not only able to count the number
of active speakers. It is also capable of rediscovering speakers
who have been speaking earlier.

According to the NIST Rich Transcription 2007 evalua-
tion the diarization error rate (DER) is defined as the ratio
of the time a speaker is misidentified to the total duration
of speech [14]. Since speech pauses occur, the DER can be
above 100%. The achieved DER in the given example is
30%, whereas the worst possible DER for the given example
is 187%.

8. CONCLUSIONS

We have presented an active source counting algorithm based
on a variational EM algorithm for complex Watson Mixture
Models. A key component was the identification and empha-
sis of tf slots which are assumed to contain a single speaker
and thus are appropriate for source counting. In tests in an
offline scenario it was shown to outperform a DOA-based
source counting algorithm. We then proposed an algorithm
for online estimation of the number of active source, which
has a latency of only two frames. Since the proposed algo-
rithm estimates mode vectors which capture the spatial prop-
erties of a source, it is not only able to count the number of
sources but to rediscover sources seen before. Furthermore,
the mode vectors can be immediately used for beamforming
and source separation.
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