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Abstract

A method for nonstationary noise robust automatic speech
recognition (ASR) is to first estimate the changing noise
statistics and second clean up the features prior to recogni-
tion accordingly. Here, the first is accomplished by noise
tracking in the spectral domain, while the second relies
on Bayesian enhancement in the feature domain. In this
way we take advantage of our recently proposedmaximum
a-posteriori based (MAP-B) noise power spectral density
estimation algorithm, which is able to estimate the noise
statistics even in time-frequencybins dominated by speech.
We show that MAP-B noise tracking leads to an improved
noise model estimate in the feature domain compared to
estimating noise in speech absence periods only, if the bias
resulting from the nonlinear transformation from the spec-
tral to the feature domain is accounted for. Consequently,
ASR results are improved, as is shown by experiments con-
ducted on the Aurora IV database.

1 Introduction

ASR in the presence of nonstationary distortions is still
a major challenge. This is evidenced by the interest in
benchmarks on this topic, such as the series of computa-
tional hearing in multisource environments (CHiME) chal-
lenges [1]. If only a single microphone signal is available,
most noise estimation algorithms rely on the assumption
that noise is ’more stationary’ than speech and that time-
frequency bins exist, where noise can be observed alone.
A multitude of noise tracking algorithms have been de-
veloped that are based on these assumptions [2]. They
usually operate in the short-time Fourier transform (STFT)
domain, where speech is known to have a sparse represen-
tation, such that time-frequency bins can be identified that
are dominated by noise.

In [3] we have proposed a MAP-B estimator which
works in the power spectral (PS) domain and can update its
noise power spectral density (PSD) estimate even if speech
is dominant in the time-frequency bin under consideration.
The estimator computes the posterior probability density
function (PDF) of the spectral noise variance in the pres-
ence of an observation, which is ”distorted” by speech. Us-
ing the estimator as a postprocessor of a speech enhance-
ment system we were able to improve the noise PSD es-
timates of most state-of-the-art noise trackers for a large
range of noise types and signal-to-noise ratios (SNR) [4].

ASR systems, however, rely on logarithmic mel power
spectral coefficients (LMPSC), mel-frequency cepstral co-
efficients (MFCC) or features derived from them. The track-
ing of noise in these domains has turned out to be quite
difficult [5]. Therefore, many noise robust ASR systems
rely on estimates of the noise features computed from time
spans of speech absence, such as the beginning of an utter-
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ance, and which are kept constant during speech presence.
However, the reliable identification of such time spans by
means of a voice activity detection is a challenging task on
its own right. Furthermore, such a setup is unable to follow
the nonstationarity of noise during speech activity.

Several efforts have therefore been made to estimate
the noise for noise robust ASR in the mel spectral domain.
Dynamic noise adaptation not only models noise in the mel
spectrum as a Gaussian dynamical process [6] but does the
complete inference, i.e., the estimation of the clean speech
posterior in this domain. In [7] it was shown that STFT-
based speech enhancement can also be quite effective for
ASR, if the increased variance of the noise compensated
features is accounted for. Yoshioka and Nakatani argued
that the preferred domain for estimating nonstationary dis-
tortions is the STFT or PS domain, while the compensation
for noise for robust ASR is best done in the LMPSC or
MFCC domain [8]. The parameters of the transformation
of the noise PSD estimate from the PS into the LMPSC do-
main, which they dubbed noise model transfer (NMT) are
determined in a maximum likelihood sense, employing the
Expectation Maximization (EM) algorithm. They demon-
strated the effectiveness of this approach for ASR in the
presence of competing speakers and reverberation.

In this paper we employ the NMT approach to trans-
form the noise PSD estimate of the MAP-B noise tracker
to theMFCC domain. Rather than using the resulting noise
feature vector as a point estimate, we take it as the mean
of a time-variant Gaussian prior PDF of the noise. We
build upon our previous work on speech feature enhance-
ment [9], where the clean speech feature posterior PDF is
computed from the mentioned Gaussian noise prior and a
Gaussian mixture model (GMM) for the speech prior. We
show that the use of the MAP-B noise tracker leads to an
improved noise prior in the LMPSC domain, which is able
to follow the time-variant noise statistics even during the
presence of speech. Recognition experiments are carried
out on the AURORA IV database showing the effective-
ness of the proposed noise robust ASR system.

2 System Overview

Fig. 1 gives an overview of the overall system. At its
core is the Bayesian feature enhancement (BFE), that op-
erates in the MFCC domain. The output of the BFE is the
cleaned-up feature vector x̂t, estimated from the corrupted
feature vector yt. In our approach to noise robust ASR,
the time-variant a priori model of noise is constantly up-
dated by the MAP-B noise tracking algorithm operating in
the PS domain, after transforming the spectral noise PSD
estimates σ̂2

N,kt to the MFCC domain resulting in µ̂n,t via

the NMT approach and the following discrete cosine trans-
form (DCT). Below we are going to describe the different
components of our ASR system in more detail.
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Figure 1: Block diagram of complete system

2.1 Bayesian Feature Enhancement

The goal of BFE is to compute the posterior PDF of the
clean feature vector xt, where t denotes the frame index,
given the observed noisy feature vectors y1:t = y1, . . . ,yt.
When targeting noise robust speech recognition, the pos-
terior depends on the noise feature vector nt. Instead of
treating nt as a deterministic parameter, it is modelled as a
realization of a random process, to be able to deal with un-
certainty. We therefore estimate the joint posterior distri-
bution p(xt,nt|y1:t), from which the posterior p(xt|y1:t)
is obtained by marginalization, and the MMSE estimate is
received via x̂t = E[xt|y1:t].

Let zt =(xt,nt). Conceptually, the posterior p(zt|y1:t)
is obtained via Kalman Filter-like recursions [9], compris-
ing the so-called prediction step:

p(zt|y1:t−1) =

∫

p(zt|zt−1,y1:t−1) ·p(zt−1|y1:t−1)dzt−1

(1)
and the following update step:

p(zt|y1:t) ∝ p(yt|zt) ·p(zt|y1:t−1). (2)

Here, p(yt|zt) = p(yt|xt,nt) is the observation model,
which relates the observed noisy feature vector yt to the
underlying clean feature vector xt and the noise nt. Fur-
ther, p(zt|zt−1,y1:t−1) ≈ p(zt|zt−1) is the a priori model.
While the use of a dynamical model of speech has turned
out to be crucial for the success of feature enhancement
in the presence of reverberated speech [9], in the case of
noise-only corruptions considered in this contribution, a sta-
tic model is sufficient:

p(zt|zt−1)≈ p(zt) = p(xt) ·p(nt). (3)

While for the a priori model of speech p(xt) a GMM is
employed, the a priori model of noise is taken to be a single
Gaussian distribution:

p(nt) = N (nt;µn,t,Σn). (4)

Note, that the mean vector µ
n,t is assumed to be time-

variant, while the covariance matrix Σn is considered to
be time-invariant. The time-variant mean vector µn,t is

obtained from the MAP-B noise tracker estimates σ̂2
N,kt,

as will be described in the next subsection.
While environmental noise is additive in the time do-

main, the relationship between the MFCC feature vectors
yt,xt and nt computed from noisy speech, speech and
noise is highly nonlinear. In this work we employ the ob-
servation model

yt =D · ln
(

eD
−1·xt + eD

−1·nt

)

, (5)

where D denotes the DCT matrix and D−1 its (pseudo)
inverse. The computation of the clean speech posterior
p(xt|yt) relies on an iterated vector Taylor series (IVTS)
approximation, where the nonlinearity in eq. (5) is lin-
earized w.r.t. xt and nt.

2.2 MAP-B Noise Tracker

In [3] we have presented a noise PSD estimation algorithm
and its use in a single-channel speech enhancement sys-
tem. Given the STFT coefficients Ykt =Xkt+Nkt of the
noisy speech signal, where Xkt and Nkt are the STFTs of
clean speech and noise signals, respectively, and where k
denotes a frequency bin index, the algorithm determines an
approximate MAP estimate of the spectral noise variance
σ2
N,kt = E[|Nkt|

2]. To this end the a-priori PDF pσ2
N

(σ2)

of the time-variant noise PSD for each frequency bin was
modelled by a scaled inverse chi-squared (SICS) distribu-
tion:

pσ2
N

(σ2;ν0,λ
2
kt) =

(ν0λ
2
kt/2)

ν0/2

Γ(ν0/2)
·
(

σ2
)−

ν0+2

2 · e
−

ν0λ
2
kt

2σ2

(6)

with the degrees of freedom and scale parameters ν0 and
λ2kt, respectively. (6) is a conjugate prior for the Gaus-
sian observation PDF pY (y) only in the case of absence of
speech. In order to maintain an efficient estimation proce-
dure in the presence of speech, the posterior pσ2

N
|Y (σ

2|y)

was approximated by a SICS distribution with the same
mode as the exact posterior PDF.

The MAP-B noise PSD estimator assumes that an esti-
mate of the clean speech PSD σ2

X,kt = E[|Xkt|
2] is avail-

able. To achieve this, a speech enhancement stage is em-
ployed, which itself requires a first estimate of the noise
PSD. This first coarse noise PSD estimate is afterwards re-
fined by the MAP-B noise tracker, which acts as a post-
processor. It sholud be mentioned, that any noise tracking
algorithm may be used in the first stage.

In [4] we employed eight different state-of-the-art noise
PSD estimators, and the MAP-B postprocessor was able to
improve the noise estimates of the majority of them un-
der most tested noise conditions and for low to moderate
SNR values. It is well known that if the SNR increases it
becomes increasingly difficult to estimate the noise PSD
during speech activity. The results of [10] showed that the
estimation error of most noise tracking algorithms rapidly
increases if the SNR is 15dB or larger.

The MAP-B postprocessor operates in the PS domain,
while the BFE and the ASR work in the MFCC domain.
The noise PSD estimates must therefore be transformed to
the MFCC domain. For this purpose the recently proposed
NMT algorithm is employed [8].



2.3 Noise Model Transfer

The goals of the noise model transfer block in Fig. 1 are,
firstly, to transform the noise PSD estimates σ̂2

N,kt to the

LMPSC domain, secondly, to compensate for a global bias
of MAP-B estimates by means of the NMT approach [8]
and, subsequently, to convert the resulting estimates to the
MFCC domain. We hypothesize, that

µ̂n,t =D ·
(

LM(σ̂2
N,t)+b

)

, (7)

where LM(·) is a shorthand notation for the processing
steps of the log-mel filterbank of the ETSI standard front-
end [11] i.e. the transformation from the PS domain to the
LMPSC domain. Here σ̂

2
N,t = (σ̂2

N,kt;k = 1, . . . ,K) is a
column vector that comprises the time-variant noise PSD
estimates at all K frequency bins.

The model in (7) assumes a bias vectorb, which is a re-
sult of the nonlinear logarithmic transformation and which
is assumed to be constant for each utterance. In [8] a Max-
imum Likelihood estimate of b is derived in the LMPSC
domain by means of the EM algorithm. While [8] em-
ployed NMT for competing speaker and reverberation es-
timation, it is used here for nonstationary noise tracking.

3 Experimental Results

In this section we are going to evaluate the performance of
our ASR system depicted in Fig. 1 step by step. First of
all the quality of noise tracking in the LMPSC domain is
considered. The efficiency of the MAP-B algorithm in es-
timating the time-variant noise PSD has been extensively
evaluated in [4]. Here, we therefore concentrate on evalu-
ating its ability to estimate the trajectory of the noise fea-
ture vector, in conjunction with the NMT approach. Next
the performance of the overall system is assessed by means
of ASR results.

3.1 Aurora IV Database

Experiments are conducted on the Aurora IV database [12],
where the noise signals have been artificially added to the
available clean speech signals to obtain the noisy test data.
This allows to compute reference noise features, which the
noise estimates can be compared to. The Aurora IV data-
base is based on the DARPA Wall Street Journal (WSJ0)
Corpus. The training data are taken from the clean data of
the SI-84WSJ0 training set recordedwith a Sennheiser mi-
crophone at 16kHz sampling rate and decimated to 8kHz.
The test data consist of the 5k WSJ0 November’92 NIST
evaluation test set comprising 166 utterances. 6 versions
of the test set with artificially added noises at randomly
chosen SNR conditions between 5dB and 15dB are given,
namely airport, babble, car, restaurant, street traffic and
train station noise.

3.2 Noise Tracking Performance

The performance of the noise tracking is evaluated in the
LMPSC domain by using reference noise LMPSCs, which
are calculated for each utterance by a noncausal smoothing
of the known true noise LMPSC ñt over time for each mel-
frequency band separately, which is realized by the Matlab
function filtfilt(1-α, [1 -α], ñt) with α= 0.95.

For comparison purposes we start with a simple con-
stant noise tracker in the LMPSC domain denoted by C-
LMPSC. Its time-invariant estimates are calculated based

on the 20 first non-speech signal frames for each utterance.
This straightforward estimation procedure is often used in
ASR tasks. Fig.2 shows the mean squared error (MSE) val-
ues of the C-LMPSC noise estimates averaged over time,
over the LMPSC vector components and over the utter-
ances for all 6 noise types of the Aurora IV database.

Based on the corresponding time-invariant noise PSD
estimates we calculated an estimate of the clean speech
PSD σ̂2

X,kt by using the well known decision-directed ap-

proach, see Fig. 1 . Afterwards, we utilized an optimized
MAP-B noise tracker with a degrees of freedom ν0 = 80
and a frequency dependent bias compensation factor

βmax(f) =

{

2 ·β0, 0< f ≤ fN
2(

1+ sin2
(

f ·π
fN

))

·β0,
fN
2

< f ≤ fN
(8)

where fN the Nyquist frequency and β0 = 0.01 [4]. Note
that in [4] we used a frequency independent bias compen-
sation factor. βmax(f) here is heuristically chosen andmo-
tivated by the low-pass characteristic of speech PSD. The
MAP-B postprocessor aims to follow the temporal changes
of the nonstationary noise PSD even if speech is dominant
over noise. The quality of MAP-B estimates in the LMPSC
domain without any improvement through the NMT ap-
proach is shown in Fig.2.

Denoted by M-onNMT and M-offNMT we see fur-
ther MSE values of the MAP-B estimates improved by the
NMT approach, either in ’online’ or in ’offline’ mode, re-
spectively. For estimation of the bias vector b in the ’of-
fline’ mode we carried out a maximum of 30 EM itera-
tions by using the noisy features of the whole utterance. In
the ’online’ mode, b was calculated after every 20 frames
based on all previous features by carrying out a maximum
of 2 EM iterations on each data block. For NMT estima-
tion we used a clean speech GMM in the LMPSC domain
with 32 components and computed every component of the
bias vector b for each dimension separately. For the pur-
pose of comparison the MSE values of the optimal NMT
approach with b = btrue are also shown in Fig.2, denoted
by M-optNMT.
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Figure 2: MSE values of different noise LMPSC estimates
for the Aurora IV database.

Fig.2 shows that the MAP-B estimates are not bias free
in the LMPSC domain. They absolutely need a bias correc-
tion achieved in our system by using the NMT approach.
It is also striking to see that the entire system improves the
noise tracking performance noticeably. By and large it can
be stated that, while the MAP-B postprocessor takes care
of tracking the changes of noise PSD, the NMT approach
contributes decisively to reducing the residual global bias



of the MAP-B estimates in the feature domain. Moreover
it should be mentioned that compared to the C-LMPSC es-
timates the proposed system was able to improve the track-
ing performance for all noise types but only for car noise,
which represents a rather stationary noise type.

3.3 ASR Tests

For BFE, an a priori GMM of clean speech with 128 com-
ponents and diagonal covariances is trained on MFCC fea-
ture vectors of clean training data of the Aurora IV corpus
under the EM framework. Training of the Hidden Markov
Models (HMMs) of the recognizer is carried out using the
HMM Tool-Kit [13] on the same training data. The ex-
tracted static cepstral features are appended by dynamic
features of the first and second order, giving a feature vec-
tor of length 39. For the Aurora IV task, word-internal
triphone HMMs with three emitting states in a linear topol-
ogy and a mixture of 10 Gaussians per state are used. The
silence is modelled by a mixture of 20 Gaussians per state.

The resulting word error rates λWER for a bigram lan-
guage model calculated on the enhanced features x̂t are
given in the Tab.1 for clean speech, all 6 noise types and
for different a priori noise models p(nt). While the mean
vectors µ̂n,t were estimated by different noise trackers,

the diagonal covariances Σ̂n were always calculated based
on the first 20 non-speech frames. Furthermore λWER of
the Baseline (no enhancement) and the Reference (using a
smoothed version of the true vector µn,t) are provided.
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cle 12.7 13.0 12.6 12.0 12.1 12.9 12.2
air 61.5 51.9 50.2 47.3 47.4 44.5 29.3
bab 60.6 47.0 44.9 42.6 43.0 42.0 32.0
car 39.0 19.5 18.4 17.1 16.9 17.6 15.9
res 58.8 52.7 54.0 51.9 50.5 46.9 34.8
str 58.2 43.5 45.4 43.9 42.1 41.4 30.9
tra 60.6 43.0 43.7 43.0 42.6 42.0 33.7

AVG 50.2 38.7 38.5 36.8 36.4 35.3 27.0

Table 1: Word error rates λWER on the Aurora 4 database.

It is noticeable that on average (AVG) the improved
noise tracking leads to a small, however consistent, de-
crease of λWER. While the MAP-B estimates contribute
to an improvement of λWER compared to the C-LMPSC
estimator by only about 0.2 percent points, the subsequent
NMT approach however reduces λWER further by up to 1.9
points in online and even 2.3 points in offline NMT mode
from the maximum possible 3.4 points in the case of the
M-optNMT estimates.

4 Conclusions

In this paper we have shown that the tracking of the non-
stationary noise PSD in the spectral domain can lead to im-
proved WER of an automatic speech recognizer. Spectral
noise tracking was achieved by employing a MAP-based
estimator. Its estimate was transformed to the feature do-
main using the NMT approach, which accounts for the bias
introduced by the nonlinear transformation. The estimate

was then used as the time-variant mean of the noise prior
in Bayesian feature enhancement. While small WER gains
have been achieved, there is much room for further im-
provement. This can be seen when comparing the results
with those achievable if the true reference mean vector of
the noise prior were available, see Tab.1. Further improve-
ments are likely to be achieved by cepstral mean normal-
ization and by nonlinearly mapping the MFCCs by a deep
neural network.
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