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ABSTRACT

In this paper we present a novel initialization method for unsu-
pervised learning of acoustic patterns in recordings of continuous
speech. The pattern discovery task is solved by dynamic time
warping whose performance we improve by a smart starting point
selection. This enables a more accurate discovery of patterns com-
pared to conventional approaches. After graph-based clustering the
patterns are employed for training hidden Markov models foran un-
supervised speech acquisition. By iterating between modeltraining
and decoding in an EM-like framework the word accuracy is contin-
uously improved. On the TIDIGITS corpus we achieve a word error
rate of about 13% by the proposed unsupervised pattern discovery
approach, which neither assumes knowledge of the acoustic units
nor of the labels of the training data.

Index Terms— unsupervised learning, dynamic time warping

1. INTRODUCTION

Unsupervised acoustic pattern discovery has the task to findrecur-
ring patterns in recordings of speech or general audio, which, after
clustering, can be assigned labels which may then be used to train
a classifier. One application is the unsupervised training of an au-
tomatic speech recognizer (ASR), which does not require costly la-
beled training data. Another application is the classification of au-
dio recordings. The discovered patterns will be used to classify the
recordings based on the distribution of these patterns and their se-
quence in the recordings.

Non-negative matrix factorization (NMF) has been proposedfor
unsupervised pattern discovery in audio and speech, by factorizing
a spectrogram of the audio data into basis vectors and activations.
Those basis vectors could be related to phonemes [1]. A majordis-
advantage of NMF is that temporal correlations and differences in
speaking rate are not modeled by standard NMF. Although some
extensions of NMF have been proposed to overcome these issues,
dynamic time warping (DTW) seems to more elegantly account for
time variability. DTW searches a time alignment path between two
sequences of feature vectors and thus provides a measure of similar-
ity between the two. Variants of DTW have been extensively inves-
tigated for finding recurrent patterns in audio or speech [2,3, 4].

An issue with DTW, however, is its large computational com-
plexity. To find two sub-sequences of acoustic feature vectors
which are similar to each other, segmental DTW (SDTW) has been
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proposed, where an alignment path is searched for which may be
shorter than either of the two feature vector sequences to becom-
pared. Since the sub-sequences may start at arbitrary positions the
number of starting points and thus alignment paths to be computed
grows quadratically with the database size.

In order to reduce the number of alignment paths to be searched,
it was suggested to subdivide the distance matrix into diagonal bands
and to search alignment paths for each band separately, followed
by a path trimming algorithm to find the subsequences with largest
acoustic similarity [3]. A distance matrix, see Fig. 1 further below
for an example, contains all pairwise distances between thefeature
vectors of two utterances. An alternative to SDTW, which avoids
the rigid band structure, is unbounded DTW (UDTW) as proposed
in [5]. Here, the search space is reduced by requiring the starting
points for the alignment paths to lie on specific horizontal or diago-
nal lines of the distance matrix. Additionally, the allowedtransitions
within the alignment paths were restricted and the path was searched
in forward and backward direction. In [6] we proposed a combina-
tion of DTW and clustering using a modified K-Means++ approach,
which avoided the computation of all inter-utterance distance matri-
ces.

However, the measures to reduce the complexity usually go hand
in hand with reducing the probability of finding all recurrent pat-
terns. For example, with the band structure and the path trimming
introduced in [3], only one coincidence can be detected, even if the
sequences compared contain two similar feature subsequences lying
in the same band. Also the restriction on the location of the starting
points in [5] clearly reduces the chances to find all matchingsubse-
quences.

In this contribution we propose a novel starting point selection
which considerably reduces false alarm and missed hit ratesin find-
ing similar acoustic patterns at hardly an increase in computational
effort. The acoustic patterns are subsequently clustered and used to
train a hidden Markov model (HMM). Here we propose an itera-
tive training, where the clusters deliver only an initial labeling of the
training data, which is subsequently improved in the courseof the
HMM training.

The paper is organized as follows: In the next section we de-
scribe the steps required to train a speech recognizer in a completely
unsupervised fashion. Emphasis is placed on the novel initialization
procedure for recurrent pattern discovery in Section 2.1.1and the
proposed iterations between training and decoding to improve the
classification rate in Section 2.3. Experimental results are given in
Section 3 and we finish with conclusions in Section 4 and a descrip-
tion of the relation to prior work in Section 5.



2. TASK OVERVIEW

The unsupervised training of a speech or audio classifier canbe sub-
divided into the following steps

i) Discovery of recurrent sequences of audio patterns

ii) Clustering of audio patterns

iii) Training of the classifier

In this work we will focus our discussion on i) and iii).

2.1. Pattern Discovery

Let Da,b be the distance matrix computed from two sequences
Xa = {xa(1), . . . ,xa(La)} and Xb = {xb(1), . . . ,xb(Lb)}
of feature vectors of lengthLa andLb frames, respectively. The
matrix has entries[Da,b]i,j = d(xa(i),xb(j)), whered(·, ·) is
an appropriately chosen distance measure. The goal of DTW is
to find an optimal sequence of mappings, i.e., an alignment path
Φk = (ik, jk), betweenXa andXb, wherek is the index of a
mapping between a pair of feature vectors at the time instancesi and
j. The sequence of mappings is found by minimizing the cumulative
distance

D (Xa,Xb) =
K∑

k=1

d (xa(ik),xb(jk)) (1)

with respect to certain constraints on the allowed transitions from
(ik, jk) to (ik+1, jk+q). Here,K is the length of the alignment path.

Since DTW delivers only a single alignment path over the com-
plete length of the two sequences we use segmental DTW (SDTW)
from [3] which aims to find multiple alignment paths. This is
achieved by subdividing the search space, i.e., the distance matrix,
into diagonal bands, with a predefined widthR, and searching for
individual alignment paths in each band separately, see Fig. 1.
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Fig. 1. Distance matrix between the feature vector series of two
utterances including the diagonal band limits (dashed lines), the dis-
covered alignment paths (black) and LCMA paths (magenta)

In a second step the found sequences of mappings for each band
are refined by searching for the ”length constrained minimumaver-
age” (LCMA) path, i.e., the subsequence on the alignment path for

which the accumulated average distortion along the path

DLCMA (Xa,Xb) =
1

ke − ks + 1

ke∑

k=ks

d (xa(ik),xb(jk)) (2)

is minimal, under the constraint that the LCMA lengthke − ks is
larger than some given minimum lengthLmin.

The band structure, however, prevents that all relevant pattern
matches are found. Firstly, some bands could be positioned such
that the edges of them will cut through valid sequences. Secondly,
within one band only one sequence of mappings can be found, even
if multiple similar patterns exist. Thirdly, a sequence of mappings
will be searched (and found) in every sub-band, even if no valid pair
might be present, resulting in false detections.

UDTW has similar problems. The starting points are selected
along diagonal or vertical lines. This arbitrary selectionof starting
points is questionable since choosing too many starting points might
produce more false detections or poor mappings and with too few
starting points not all pattern matches will be found.

2.1.1. Improved Initialization

While a completely unconstrained search is prohibitive dueto com-
plexity reasons, the following procedure relaxes the constraints im-
posed by SDTW and UDTW. We propose to choose the centers of the
search regions in SDTW and the starting points in UDTW to be the
local minima of a smoothed log-distance matrix. If SDTW is used,
this choice minimizes the probability that the alignment path will hit
the search region boundaries. Further, the search region islimited to
a certain lengthLmax which allows to find more than just one recur-
ring pattern in a band. If UDTW is used, the alignment is extended
in forward and backward direction alternatingly, startingfrom the lo-
cal minimum. To avoid finding adjacent minima which correspond
to the same alignment path, exclusion areas around selectedminima
are introduced within which all local minima are discarded.

The number of minima to be searched for is chosen proportional
to the sum of the lengthsLa andLb of the two sequencesXa and

Xb and is given byNmin =
⌈

La+Lb

Rmin

⌉
, which results in a similar

number as the number of bands used in [3]. Note that the numberof
minima to be searched for can be chosen independently of the width
of the search region, which is in contrast to [3] where the number of
regions and thus LCMA paths increases with decreasing band width.

Fig. 2 shows the search regions (dashed boxes), the alignment
paths and the LCMA paths obtained with the proposed approachfor
the same two utterances as in Fig. 1. If the old band limits were
drawn in Fig. 2 one would observe that zero, one or multiple LCMA
paths can be found per band. Note that the distance matrix hasbeen
smoothed in a preprocessing step to avoid the detection of spurious
minima, as will be described in the next section. However, the align-
ment path calculation and the LCMA path search are carried out on
the non-smoothed distance matrix.

2.1.2. Distance Matrix Smoothing

By smoothing the entries of the distance matrix isolated local min-
ima with otherwise large distance values in its vicinity will be re-
moved. Matches of subsequences resulting in low distance values
with a certain temporal extent will, however, be preserved.They
correspond supposedly to the recurrent patterns to be discovered.

Smoothing is achieved by sweeping a2-dimensional hexago-
nally shaped smoothing kernelK over the logarithmic distance ma-
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Fig. 2. Distance matrix including search region boundaries (dashed
lines), alignment paths (black) and LCMA paths (magenta) accord-
ing to the proposed method

trix:

[
D̃a,b

]

i,j
=

κ∑

n=−κ

κ∑

m=−κ

log
{
[Da,b]i+n,j+m

}
· [K]

n,m
(3)

whereκ = 2, and where the kernel is given by

K =




0 0 1 1 1
0 1 2 2 1
1 2 3 2 1
1 2 2 1 0
1 1 1 0 0


 (4)

After some informal experiments we decided to use the cosine
distance metric

d(xa(i),xb(j)) =
1

2

(
1−

x
T
a (i) xb(j)

|xa(i)||xb(j)|

)
(5)

and to smooth the logarithmic values of the distance matrixD, since
this combination yielded the best results.

A straightforward implementation of the smoothing by the
hexagonal kernel would have required19 multiplications and19
additions in the worst case. A more efficient realization, however,
can be found by following [7]. The calculation of the averagevalue
of a sliding window along a one dimensional vector requires only
one addition of the new value which is added to the window and
the subtraction of the old value which is removed from the window.
The averaging along the rows results in a horizontal line kernel, the
subsequent averaging along each column results in a rectangular
kernel and the final averaging along the diagonals results finally in
the hexagonal kernel given by eq. (4). This implementation con-
structs the kernelK step-by-step and requires only6 additions per
element of the log distance matrix̃Da,b.

2.2. Pattern clustering

The pattern discovery step delivers pairwise similaritiesof patterns
found during the comparison of two feature vector sequences. The
next step is to cluster these pattern matching pairs. In order to reduce

the amount of false matching pairs, only patterns up to a maximum
distance ofDmax are used in the two step clustering.

Here, we adopted the graph clustering algorithm of [8] which
was also used in [3]. For details, the reader is referred to these pub-
lications.

2.3. Iterative Training of Classifier

For the training of the classifier we use the clusters derivedduring
the clustering step for labeling the training data with dummy labels
(lacking any meaning in terms of word identity). We assume tohave
some a priori knowledge about the amount of clusters and thusfo-
cused on the11 biggest clusters, as this is the expected number of
digits. If the clustering process ends up with more clusters, the re-
maining ones are dropped. Admittedly this is a small limitation of
the aspect “unsupervised”, however, it allows the performance com-
parison of our approach with a speech recognizer trained in asuper-
vised manner.

The cluster labels now form the transcriptions to train HMMs
for a speech recognizer. Note that only the sequence of patterns is
used for an embedded training of the HMMs and that no isolated
training of the HMMs was performed, since we do not derive start
or stop indices from the found segments. The word boundariesare
rather found as a side product of the embedded training.

It is important to note that the cluster labels serve only as ini-
tial transcriptions. Exploiting the power of statistical models, the
trained acoustic model was used to decode the training data and thus
to determine an updated transcription, which in turn is input to the
next iteration of the acoustic model training. Overall, theiterative
training is governed by the following two equations:

Λr+1 = argmaxΛ

∏
P (X |T r; Λ) (6)

T
r+1 = argmaxT P

(
T |X ; Λr+1

)
(7)

wherer is the iteration counter. At first the HMMsΛ are trained
using the transcriptionsT from the clustering process and the audio
featuresX . Subsequently, the trained HMMs are employed to de-
code the training data and derive new transcriptions. The new tran-
scriptions are then used in the next training iteration. Theiterations
could be extended to also train a language model. For the taskcon-
sidered here (connected digit recognition), a language model, how-
ever, was not necessary.

This iterative scheme resembles the acoustic unit trainingpre-
sented in [9], where, however, the goal was to discover acoustic
events rather than recognize speech.

3. EXPERIMENTAL RESULTS

We performed our experiments on the TIDIGIT Database using the
whole subset of training speakers consisting of112 speakers and
77 digit sequences per speaker, where each speaker was processed
separately. We used the ETSI standard front-end to extract the first
13 Mel-frequency cepstral coefficients (MFCC) from the audio data
and additionally the first and second order derivatives, resulting in a
39 dimensional feature vector per10 ms frame.



3.1. Pattern Discovery

As a performance measure for the pattern discovery step we used the
false alarm rate FR and the missed hit rate MR defined as follows:

FR=
Nf −Nr

Nf

(8)

MR =
N −Nf

N
, (9)

whereNf is the total number of found alignment paths/pairs,Nr the
number of correctly found pairs andN the number of correct pairs
in the database. The resulting values of the performance measures
are displayed in a receiver operating characteristic (ROC). Different
tradeoffs between FR and MR are found by varying the parameter
Dmax in the pattern clustering stage, see Sec. 2.2.

The proposed initialization was applied to both the SDTW-based
pattern discovery approach of [3] and to UDTW described in [5].
Note that in UDTW sequences of mappings are searched for by ex-
tending the path at the starting point as long as the mean distortion
of the path is below a valueDmax and no other path at the point to
which the path would be extended to has a lower mean distortion.
This path extension will be done in forward and backward direction
around the initialization point.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 
Min+SDTW
SDTW
Min+UDTW
UDTW

Missed hit rate

F
al

se
al

ar
m

ra
te

Fig. 3. Receiver operating characteristic of proposed initialization
for SDTW (“Min+SDTW”) and for UDTW (“Min+UDTW”), com-
pared to original segmental DTW (SDTW) and unbounded DTW
(UDTW)

The experimental results from the TIDIGIT database are de-
picted in Fig. 3. Obviously, the proposed initialization approach
improves the effectiveness of both, SDTW (“Min+SDTW”) and
UDTW (“Min+UDTW”), in terms of the defined performance mea-
sures. Especially for a fixed false alarm rate the missing rate is lower
if the new starting point selection is used.

3.2. Training and Decoding

As explained before the clustering results are used to assign a se-
quence of labels to each audio file for the HMM training of an auto-
matic speech recognizer. The HMMs consisted of 18 states perword
and one Gaussian per state.

In Tab. 1 the experimental results in terms of word accuracy
(ACC), word error rate (WER), deletions (DEL), substitution (SUB)
and insertions (INS) are given after each training/decoding iteration
for up to five iterations. Additionally, the amount of processed files
NFiles is stated. From iteration0 to 1 the amount of files increases,
since the HMM based recognition allows the addition of files which

were dropped during the initial clustering step. As input tothe clus-
tering step we used the pattern matching pairs of the “Min+UDTW”
approach.

Table 1. Speech recognition results on TIDIGIT database using it-
erative unsupervised learning of patterns in speech

r NFiles ACC SUB DEL INS WER
0 8507 80.90 9.98 9.13 5.51 24.62
1 8623 85.97 9.06 4.97 0.98 15.01
2 8623 87.09 8.94 3.97 0.83 13.74
3 8623 87.60 8.89 3.51 0.82 13.22
4 8623 87.82 8.88 3.29 0.82 12.99
5 8623 87.94 8.92 3.15 0.83 12.89

From the experimental results it can be seen that the amount
of deletions, insertions and substitutions significantly decreases in
the course of the iterations, and thus the overall word errorrate is
reduced. Finally, we end up with an WER of below13%.

4. CONCLUSIONS

We have presented a novel initialization method for the unsupervised
discovery of recurrent acoustic patterns in speech. It was shown to
exhibit lower false alarm and missed hit rates than two competing
state-of-the-art approaches and was shown to be applicableto both
the SDTW approach of [3] and the UDTW approach of [5]. The
pattern labels obtained from graph clustering were taken asinitial
labels for a HMM training. The training was carried out completely
unsupervised by iterating between updating the HMM model param-
eters from a given transcription, and recomputing the transcriptions
by recognizing the acoustic data using the HMM models trained so
far. The word error rate was shown to be reduced in each iteration.

Since both the acoustic patterns, i.e., the dictionary, andthe la-
bels, i.e., the transcription are assumed unknown, the approach is
applicable to learn a completely unknown language from acoustic
observations. Here, language does not only refer to a human lan-
guage but also to arbitrary acoustic patterns. The approachmay thus
be used for acoustic scene classification.

5. RELATION TO PRIOR WORK

The use of SDTW and UDTW for pattern discovery was taken from
[3] and [5], respectively. Here, we present an improved initialization,
resulting in a better pattern discovery performance. The iterative
training approach is similar to [9] but has been adopted to a speech
recognition task here. This work is a significant extension of our
prior work in [6] by moving from isolated digits and acousticevents
to digit sequences.
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