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ABSTRACT

In this paper we present a novel initialization method fosun
pervised learning of acoustic patterns in recordings otinaous
speech. The pattern discovery task is solved by dynamic tim
warping whose performance we improve by a smart startingtpoi
selection. This enables a more accurate discovery of pattam-
pared to conventional approaches. After graph-basedecingtthe
patterns are employed for training hidden Markov modelsafoun-
supervised speech acquisition. By iterating between mindigling
and decoding in an EM-like framework the word accuracy igicen
uously improved. On the TIDIGITS corpus we achieve a wordrerr
rate of about 13% by the proposed unsupervised patternv@isco
approach, which neither assumes knowledge of the acousitie u
nor of the labels of the training data.

Index Terms— unsupervised learning, dynamic time warping

1. INTRODUCTION

Unsupervised acoustic pattern discovery has the task tadiut-
ring patterns in recordings of speech or general audio, hytfter
clustering, can be assigned labels which may then be usedito t
a classifier. One application is the unsupervised trainingnoau-
tomatic speech recognizer (ASR), which does not requirtyclas
beled training data. Another application is the classiftrabf au-
dio recordings. The discovered patterns will be used tesiflathe
recordings based on the distribution of these patterns fagid $e-
guence in the recordings.

Non-negative matrix factorization (NMF) has been propdsed
unsupervised pattern discovery in audio and speech, bgrfaicty
a spectrogram of the audio data into basis vectors and tiotiga
Those basis vectors could be related to phonemes [1]. A rdé&ger
advantage of NMF is that temporal correlations and diffeesnin

e

proposed, where an alignment path is searched for which reay b
shorter than either of the two feature vector sequences twire
pared. Since the sub-sequences may start at arbitrarygmssthe
number of starting points and thus alignment paths to be atedp
grows quadratically with the database size.

In order to reduce the number of alignment paths to be sedrche
it was suggested to subdivide the distance matrix into diabjpands
and to search alignment paths for each band separatelgysdl
by a path trimming algorithm to find the subsequences witlelstr
acoustic similarity [3]. A distance matrix, see Fig. 1 fuatibelow
for an example, contains all pairwise distances betweeffetitere
vectors of two utterances. An alternative to SDTW, whichidso
the rigid band structure, is unbounded DTW (UDTW) as progdose
in [5]. Here, the search space is reduced by requiring thiirsia
points for the alignment paths to lie on specific horizontadliago-
nal lines of the distance matrix. Additionally, the allowteansitions
within the alignment paths were restricted and the path wacked
in forward and backward direction. In [6] we proposed a camabi
tion of DTW and clustering using a modified K-Means++ applgac
which avoided the computation of all inter-utterance diseamatri-
ces.

However, the measures to reduce the complexity usually gd ha
in hand with reducing the probability of finding all recurtgrat-
terns. For example, with the band structure and the pathtitg
introduced in [3], only one coincidence can be detectedy évhe
sequences compared contain two similar feature subseegigring
in the same band. Also the restriction on the location of theiag
points in [5] clearly reduces the chances to find all matcisimgse-
guences.

In this contribution we propose a novel starting point stdec
which considerably reduces false alarm and missed hit nafésd-
ing similar acoustic patterns at hardly an increase in caatjmnal

speaking rate are not modeled by standard NMF. Although someffort. The acoustic patterns are subsequently clusterédised to
extensions of NMF have been proposed to overcome thesesjssuérain a hidden Markov model (HMM). Here we propose an itera-

dynamic time warping (DTW) seems to more elegantly accoont f
time variability. DTW searches a time alignment path betwieo
sequences of feature vectors and thus provides a meastingilafs
ity between the two. Variants of DTW have been extensivelgsa
tigated for finding recurrent patterns in audio or speeci3[2].

An issue with DTW, however, is its large computational com-
plexity. To find two sub-sequences of acoustic feature vecto

which are similar to each other, segmental DTW (SDTW) hasibee
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tive training, where the clusters deliver only an initiddéding of the
training data, which is subsequently improved in the cowfstne
HMM training.

The paper is organized as follows: In the next section we de-
scribe the steps required to train a speech recognizer imaletely
unsupervised fashion. Emphasis is placed on the novellizition
procedure for recurrent pattern discovery in Section 2ahd the
proposed iterations between training and decoding to ingthe
classification rate in Section 2.3. Experimental resulésgiven in
Section 3 and we finish with conclusions in Section 4 and argesc
tion of the relation to prior work in Section 5.



2. TASK OVERVIEW

The unsupervised training of a speech or audio classifiebeaub-
divided into the following steps

i) Discovery of recurrent sequences of audio patterns
i) Clustering of audio patterns
iii) Training of the classifier

In this work we will focus our discussion on i) and iii).

2.1. Pattern Discovery

which the accumulated average distortion along the path

ke
ELCMA (XmXb) = k)%kﬂ Z d(wa(lk)7wb(]k)) (2)

k=ks

is minimal, under the constraint that the LCMA lendth — ks is
larger than some given minimum lengtin.

The band structure, however, prevents that all relevarempat
matches are found. Firstly, some bands could be positioneld s
that the edges of them will cut through valid sequences. 18#go
within one band only one sequence of mappings can be foued, ev
if multiple similar patterns exist. Thirdly, a sequence cippings
will be searched (and found) in every sub-band, even if nial yalir

Let D, be the distance matrix computed from two sequencegnight be present, resulting in false detections.

X, = {:l}a(l),.“ﬁl}a([/a)} ande = {mb(1)7...,wb(Lb)}

UDTW has similar problems. The starting points are selected

of feature vectors of lengtli., and L, frames, respectively. The along diagonal or vertical lines. This arbitrary selectafrstarting

matrix has entrie§D, ,];;; = d(xa(),xs(j)), whered(-,-) is

points is questionable since choosing too many startingtponight

an appropriately chosen distance measure. The goal of DTW igroduce more false detections or poor mappings and witheao f
to find an optimal sequence of mappings, i.e., an alignmetit pa Starting points not all pattern matches will be found.

&, = (ix, jr), betweenX, and X,, wherek is the index of a
mapping between a pair of feature vectors at the time inetrand

j. The sequence of mappings is found by minimizing the curivalat

distance

D (Xa, X3) = > d(@a(ir), zs(jr)) 1)

k=1

with respect to certain constraints on the allowed tramsétifrom

(ik, jr) 10 (ik+1, Ju+q). Here,K is the length of the alignment path.

2.1.1. Improved Initialization

While a completely unconstrained search is prohibitive tueom-
plexity reasons, the following procedure relaxes the cairgs im-
posed by SDTW and UDTW. We propose to choose the centers of the
search regions in SDTW and the starting points in UDTW to lee th
local minima of a smoothed log-distance matrix. If SDTW igdis

this choice minimizes the probability that the alignmerthpaill hit

the search region boundaries. Further, the search regiionitied to

a certain lengthLmax Which allows to find more than just one recur-

Since DTW delivers only a single alignment path over the COMing pattern in a band. If UDTW is used, the alignment is estéh
plete length of the two sequences we use segmental DTW (SDTW), torward and backward direction alternatingly, startirgn the lo-

from [3] which aims to find multiple alignment paths.
achieved by subdividing the search space, i.e., the distaratrix,

into diagonal bands, with a predefined width and searching for

individual alignment paths in each band separately, se€elFig
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cal minimum. To avoid finding adjacent minima which corragho
to the same alignment path, exclusion areas around seladtétia
are introduced within which all local minima are discarded.
The number of minima to be searched for is chosen propottiona
to the sum of the lengths, and L;, of the two sequenceX, and
X, and is given byNpin = L;l—:ifb , which results in a similar
number as the number of bands used in [3]. Note that the nuafber
minima to be searched for can be chosen independently ofitite w
of the search region, which is in contrast to [3] where the ipeinof
regions and thus LCMA paths increases with decreasing baitt.w
Fig. 2 shows the search regions (dashed boxes), the alignmen
paths and the LCMA paths obtained with the proposed apprizech
the same two utterances as in Fig. 1. If the old band limitsewer
drawn in Fig. 2 one would observe that zero, one or multipl&1AC
paths can be found per band. Note that the distance matrizdeas
smoothed in a preprocessing step to avoid the detectionuoiosjs
minima, as will be described in the next section. However align-
ment path calculation and the LCMA path search are carri¢dmou
the non-smoothed distance matrix.

2.1.2. Distance Matrix Smoothing

Fig. 1. Distance matrix between the feature vector series of Wy smoothing the entries of the distance matrix isolateallogin-

utterances including the diagonal band limits (dashed)irtbe dis-
covered alignment paths (black) and LCMA paths (magenta)

ima with otherwise large distance values in its vicinity viié re-
moved. Matches of subsequences resulting in low distancesa
with a certain temporal extent will, however, be preservadhey

In a second step the found sequences of mappings for each bandrrespond supposedly to the recurrent patterns to beveismmh

are refined by searching for the "length constrained mininawer-
age” (LCMA) path, i.e., the subsequence on the alignmerit foat

Smoothing is achieved by sweeping2alimensional hexago-
nally shaped smoothing kern&l over the logarithmic distance ma-



the amount of false matching pairs, only patterns up to a marxi
distance ofDmax are used in the two step clustering.

Here, we adopted the graph clustering algorithm of [8] which
was also used in [3]. For details, the reader is referredasettpub-
lications.

2.3. lterative Training of Classifier

For the training of the classifier we use the clusters derdiaihg
the clustering step for labeling the training data with dwrlabels
(lacking any meaning in terms of word identity). We assumiestee
some a priori knowledge about the amount of clusters andftius
cused on thd 1 biggest clusters, as this is the expected number of
digits. If the clustering process ends up with more clustérs re-
maining ones are dropped. Admittedly this is a small linndtatof
Fig. 2. Distance matrix including search region boundaries (edsh the aspect “unsupervised”, however, it allows the perforreecom-
lines), alignment paths (black) and LCMA paths (magentapat: ~ parison of our approach with a speech recognizer trainecirpar-
ing to the proposed method vised manner.
The cluster labels now form the transcriptions to train HMMs
for a speech recognizer. Note that only the sequence ofrpatie
trix: used for an embedded training of the HMMs and that no isolated
. . training of the HMMs was performed, since we do not derivetsta
~ _ or stop indices from the found segments. The word boundaries
[D“’b]i,j o Z Z log {[D”’b]””vj*m} K G rather found as a side product of the embedded training.
It is important to note that the cluster labels serve onlyrés i
wherer = 2, and where the kernel is given by tial transcriptions. Exploiting the power of statisticabdels, the
trained acoustic model was used to decode the training ddtthas
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00 1 11 to determine an updated transcription, which in turn is triputhe
0 1 2 21 next iteration of the acoustic model training. Overall, ttezative
K=|1 23 2 1 (4)  training is governed by the following two equations:
1 2 2 1 0
1 1 1 0 0
A" = argmax H P(XI|T";A) (6)
After some informal experiments we decided to use the cosine 1 1
distance metric T = argmaxy P (T|X;A™) 7
T, .
d(za (i), (j)) = ! <1 - M) (5)  wherer is the iteration counter. At first the HMM4 are trained
2 |2a (4)] |6 (5)]

using the transcription® from the clustering process and the audio

and to smooth the logarithmic values of the distance mdijsince ~ featuresX. Subsequently, the trained HMMs are employed to de-
this combination yielded the best results. coo_le _the training data an_d derive new transcriptions. Tlmetqm-

A straightforward implementation of the smoothing by the scriptions are then used in thfe next training iteration. ifém@tions
hexagonal kernel would have requiréé multiplications and19 ~ could be extended to also train a language model. For thectask
additions in the worst case. A more efficient realizationyéaer, ~ Sidered here (connected digit recognition), a languageeinbadw-
can be found by following [7]. The calculation of the averagéue €Vl Was not necessary.
of a sliding window along a one dimensional vector requirely o This iterative scheme resembles the acoustic unit traipieg
one addition of the new value which is added to the window andsented in [9], where, however, the goal was to discover dimous
the subtraction of the old value which is removed from thedeim. events rather than recognize speech.

The averaging along the rows results in a horizontal linedkithe
subsequent averaging along each column results in a reg#ang
kernel and the final averaging along the diagonals resukidlyfim

the hexagonal kernel given by eq. (4). This implementation-c 3. EXPERIMENTAL RESULTS
structs the kerneK step-by-step and requires orfiyadditions per
element of the log distance mat®,, ;. We performed our experiments on the TIDIGIT Database usieg t

whole subset of training speakers consistinglo® speakers and

77 digit sequences per speaker, where each speaker was gecess
separately. We used the ETSI standard front-end to extnadirst

The pattern discovery step delivers pairwise similaribépatterns 13 Mel-frequency cepstral coefficients (MFCC) from the audated
found during the comparison of two feature vector sequentee  and additionally the first and second order derivativesltieg in a
next step is to cluster these pattern matching pairs. Irrdodeduce 39 dimensional feature vector p&d ms frame.

2.2. Pattern clustering



3.1. Pattern Discovery

As a performance measure for the pattern discovery step etthe
false alarm rate FR and the missed hit rate MR defined as fsllow

_ N;—N,
==
N — Ny

—

FR 8)

MR = )
whereN; is the total number of found alignment paths/pai¥s,the
number of correctly found pairs andl the number of correct pairs
in the database. The resulting values of the performancsumes
are displayed in a receiver operating characteristic (RO&erent

tradeoffs between FR and MR are found by varying the paramete

Dmax in the pattern clustering stage, see Sec. 2.2.
The proposed initialization was applied to both the SDT\Weuh

were dropped during the initial clustering step. As inputhte clus-
tering step we used the pattern matching pairs of the “MinFWD
approach.

Table 1. Speech recognition results on TIDIGIT database using it-
erative unsupervised learning of patterns in speech

r | Nrless ACC SUB DEL INS WER

0| 8507 80.90 9.98 9.13 551 24.62
1]8623 8597 9.06 497 098 15.01
28623 87.09 894 397 0.83 13.74
3|8623 8760 8.89 351 0.82 1322
4| 8623 8782 888 329 0.82 12.99
58623 8794 892 315 0.83 12.89

From the experimental results it can be seen that the amount

pattern discovery approach of [3] and to UDTW described in [S of deletions, insertions and substitutions significantégréases in
Note that in UDTW sequences of mappings are searched for-by exhe course of the iterations, and thus the overall word eats is

tending the path at the starting point as long as the meaortigst
of the path is below a valu®max and no other path at the point to

which the path would be extended to has a lower mean distortio

This path extension will be done in forward and backwardafios
around the initialization point.
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Fig. 3. Receiver operating characteristic of proposed init@lon
for SDTW (“Min+SDTW”) and for UDTW (“Min+UDTW"), com-

reduced. Finally, we end up with an WER of bela@/%.

4. CONCLUSIONS

We have presented a novel initialization method for the pastised
discovery of recurrent acoustic patterns in speech. It \was/s to
exhibit lower false alarm and missed hit rates than two cdinge
state-of-the-art approaches and was shown to be applitableth
the SDTW approach of [3] and the UDTW approach of [5]. The
pattern labels obtained from graph clustering were takeimitial
labels for a HMM training. The training was carried out costply
unsupervised by iterating between updating the HMM modedpa
eters from a given transcription, and recomputing the tnapons
by recognizing the acoustic data using the HMM models tasee
far. The word error rate was shown to be reduced in eachiterat

Since both the acoustic patterns, i.e., the dictionary,thada-
bels, i.e., the transcription are assumed unknown, theoappris
applicable to learn a completely unknown language from sibou
observations. Here, language does not only refer to a huaran |
guage but also to arbitrary acoustic patterns. The appnoagtthus
be used for acoustic scene classification.

pared to original segmental DTW (SDTW) and unbounded DTW

(UDTW)

5. RELATION TO PRIOR WORK

The experimental results from the TIDIGIT database are de-

picted in Fig. 3. Obviously, the proposed initializationpapach

The use of SDTW and UDTW for pattern discovery was taken from

improves the effectiveness of both, SDTW (“Min+SDTW”) and [3]and [5], respectively. Here, we present an improvedahiation,
UDTW (“Min+UDTW?”), in terms of the defined performance mea- 'esulting in a better pattern discovery performance. Teeaiive

sures. Especially for a fixed false alarm rate the missirgisdbwer
if the new starting point selection is used.

3.2. Training and Decoding

As explained before the clustering results are used to mssige-
guence of labels to each audio file for the HMM training of atoau
matic speech recognizer. The HMMs consisted of 18 statesqer
and one Gaussian per state.

In Tab. 1 the experimental results in terms of word accuracy

(ACC), word error rate (WER), deletions (DEL), substitatiGUB)
and insertions (INS) are given after each training/deapdteration
for up to five iterations. Additionally, the amount of prosed files
NFries is stated. From iteratiofi to 1 the amount of files increases,
since the HMM based recognition allows the addition of fildgak

training approach is similar to [9] but has been adopted tpesch
recognition task here. This work is a significant extensibrour
prior work in [6] by moving from isolated digits and acoustieents
to digit sequences.
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