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Introduction
•Objective: Unsupervised language acquisition
• ”Learn a language like a child”
•Two-level hierarchical approach:

Acoustic Unit (AUD) Discovery

•Key Idea: Audio signal consists of small

number of building blocks, e.g. phones
•Goal: Learn acoustic units representing

repeating sequences of audio features
•1. Segment the input signal according to

the distance between the current feature
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else start a new segment.
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•2. Cluster the discovered segments according to the DTW

distance between them using a kmeans++ like seed

selection and an unsupervised graph clustering algorithm
•3. Iterative HMM training using the resulting sequence of

cluster labels as an initial transcription for the input signal.

Clusters ⇔ Acoustic Units (AUDs):
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(iteration index κ, HMM Parameters Λ and transcriptions T )

Experiments

•Database: TiDigits training set, 11 digits, 77 digit

sequences per speaker, 112 speakers, 8624 sequences
•Features: 13 element MFCCs with ∆, ∆∆ and CMVN
•Setup:

◮Speaker Dependent (SD), Speaker Independent (SI)
•Performance measures:

◮Average Precision (AP), Precision-Recall Breakeven (PRB)

AP PRB

Setup SD SI SD SI

AUD 94.7 64.6 83.3 60.0

MFCC 92.6 61.7 85.9 57.5
Table 1: AP and PRB for AUD and MFCC sequences in SD and SI setup

Probabilistic Pronunciation Lexicon
• Input: Acoustic unit sequence
•Word Model:

◮One HMM per Word with length modelling

S1 S2 SN

a1,in a1,2

a1,out

a2,out

aN,outa2,3

↓ ↓ ↓
w: 0.6 ah: 0.5 n: 0.7

uw: 0.2 ax: 0.3 m: 0.1

aa: 0.1 ae: 0.1 em: 0.1

... ... ...

◮HMMs with discrete emission probabilities
◮HMMs connected by unigram language

model following a power law distribution
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•DTW-based initialization:
◮DTW-based pattern discovery algorithm delivers clusters of

patterns in the input signal
◮For each discovered cluster initialize the emission distributions

of a word HMM accordingly

•Unsupervised speech recognizer training: Use

discovered word sequence for iterative training

Experiments

• Input: Acoustic unit sequence learned from TiDigits
•Setup for the emission distributions of the word HMMs:

◮Time-dependent: separate emission distributions per state
◮Bag of AUDs: one emission distribution for all states

•Performance measure: Word Accuracy (ACC) in %
•Random initialization of 11 word HMMs:

Setup SD SI

Bag of AUDs 74.5 57.3

Time-dependent 62.5 67.9
Table 2: ACC in SD and SI case with different setup for emission distributions

•DTW-based initialization: 8 of the 11 word HMMs

initialized in time-dependent SI case: 81.9%
•Unsupervised speech recognizer training: iterative

training of GMM-HMM speech recognizer using discovered

word sequence as initial transcription (time-dependent, SI):

Iter. 0 1 3 5 7

Random initialization 67.9 80.8 82.9 84.4 84.7

DTW-based initialization 81.9 96.6 98.4 98.5 98.5
Table 3: ACC over iterations for speech recognizer training in time-dependent SI case

Conclusions
•A hierarchical system for unsupervised word discovery
•Combination of acoustic unit discovery and word discovery
•Use of top down information (DTW) improves results
•Time-dependent emission probabilities improve results by

considering correlation in time in contrast to a bag of AUDs
•Large Vocabulary Task: Growing number of HMMs?
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