

A HIERARCHICAL SYSTEM FOR WORD DISCOVERY EXPLOITING DTW-BASED INITIALIZATION

Oliver Walter, Timo Korthals and Reinhold Haeb-Umbach

University of Paderborn, Germany {walter,haeb}@nt.uni-paderborn.de http://nt.uni-paderborn.de

Bhiksha Raj

Carnegie Mellon University, USA bhiksha@cs.cmu.edu http://mlsp.cs.cmu.edu

Introduction

- Objective: Unsupervised language acquisition
- "Learn a language like a child"
- Two-level hierarchical approach:

Acoustic Unit (AUD) Discovery

- **Key Idea:** Audio signal consists of small number of building blocks, e.g. phones
- Goal: Learn acoustic units representing repeating sequences of audio features
- 1. Segment the input signal according to the distance between the current feature vector \mathbf{x}_k and the mean of the previous segment. Join if $\mathbf{d}\left(\mathbf{x}_k,\frac{1}{N}\sum_{i=1}^{N}\mathbf{x}_{k-i}\right)<\delta_{x}$, else start a new segment.

- •2. Cluster the discovered segments according to the DTW distance between them using a kmeans++ like seed selection and an unsupervised graph clustering algorithm
- 3. Iterative HMM training using the resulting sequence of cluster labels as an initial transcription for the input signal. Clusters ⇔ Acoustic Units (AUDs):

Model est.:
$$\Lambda^{(\kappa+1)} = \underset{\Lambda}{\operatorname{argmax}} \prod_{d=1}^{D} p\left(\mathbf{X}_{d} | \mathcal{T}_{d}^{(\kappa)}; \Lambda^{(\kappa)}\right)$$
 (1)

Decoding:
$$T_d^{(\kappa+1)} = \underset{T}{\operatorname{argmax}} P\left(T|\mathbf{X}_d; \Lambda^{(\kappa+1)}\right)$$
 (2)

(iteration index κ , HMM Parameters Λ and transcriptions T)

Experiments

- Database: TiDigits training set, 11 digits, 77 digit sequences per speaker, 112 speakers, 8624 sequences
- Features: 13 element MFCCs with Δ , $\Delta\Delta$ and CMVN
- Setup:
 - Speaker Dependent (SD), Speaker Independent (SI)
- Performance measures:
 - ► Average Precision (AP), Precision-Recall Breakeven (PRB)

	AP		PRB	
Setup	SD	SI	SD	SI
AUD				
MFCC	92.6	61.7	85.9	57.5

Table 1: AP and PRB for AUD and MFCC sequences in SD and SI setup

Probabilistic Pronunciation Lexicon

- Input: Acoustic unit sequence
- Word Model:

► One HMM per Word with length modelling

- ► HMMs with discrete emission probabilities
- HMMs connected by unigram language model following a power law distribution
- DTW-based initialization:
 - DTW-based pattern discovery algorithm delivers clusters of patterns in the input signal
 - ► For each discovered cluster initialize the emission distributions of a word HMM accordingly
- Unsupervised speech recognizer training: Use discovered word sequence for iterative training

Experiments

- Input: Acoustic unit sequence learned from TiDigits
- Setup for the emission distributions of the word HMMs:
 - ► Time-dependent: separate emission distributions per state
 - ► Bag of AUDs: one emission distribution for all states
- Performance measure: Word Accuracy (ACC) in %
- Random initialization of 11 word HMMs:

Setup SD SI
Bag of AUDs 74.5 57.3
Time-dependent 62.5 67.9

Table 2: ACC in SD and SI case with different setup for emission distributions

- DTW-based initialization: 8 of the 11 word HMMs initialized in time-dependent SI case: 81.9%
- Unsupervised speech recognizer training: iterative training of GMM-HMM speech recognizer using discovered word sequence as initial transcription (time-dependent, SI):

 Iter.
 0
 1
 3
 5
 7

 Random initialization
 67.9
 80.8
 82.9
 84.4
 84.7

 DTW-based initialization
 81.9
 96.6
 98.4
 98.5
 98.5

Table 3: ACC over iterations for speech recognizer training in time-dependent SI case

Conclusions

- A hierarchical system for unsupervised word discovery
- Combination of acoustic unit discovery and word discovery
- Use of top down information (DTW) improves results
- Time-dependent emission probabilities improve results by considering correlation in time in contrast to a bag of AUDs
- Large Vocabulary Task: Growing number of HMMs?