
Unsupervised Word Discovery from Phonetic Input Using Nested

Pitman-Yor Language Modeling

Oliver Walter*, Reinhold Haeb-Umbach*, Sourish Chaudhuri** and Bhiksha Raj**

Abstract—In this paper we consider the unsupervised word
discovery from phonetic input. We employ a word segmentation
algorithm which simultaneously develops a lexicon, i.e., the
transcription of a word in terms of a phone sequence, learns
a n-gram language model describing word and word sequence
probabilities, and carries out the segmentation itself. The under-
lying statistical model is that of a Pitman-Yor process, a concept
known from Bayesian non-parametrics, which allows for an
a priori unknown and unlimited number of different words.
Using a hierarchy of Pitman-Yor processes, language models of
different order can be employed and nesting it with another

hierarchy of Pitman-Yor processes on the phone level allows for
backing off unknown word unigrams by phone m-grams. We
present results on a large-vocabulary task, assuming an error-
free phone sequence is given. We finish by discussing options
how to cope with noisy phone sequences.

I. INTRODUCTION

Unsupervised language acquisition is the task of acquiring

components of a language without any supervision. Our goal

is to acquire these components directly from audio recordings

of continuous speech.

This task may be subdivided into two subtasks: a) the

discovery of the basic acoustic building blocks of speech

(the phones or something alike), and b) the discovery of

lexical elements (such as words) which manifest themselves

as recurring sequences of the basic acoustic building blocks.

While the former is related to finding and clustering acous-

tically similar patches of speech, the latter is closely related

to structure discovery, as language has strong structural

elements with few probable words and word sequences and

many less probable ones, which can be efficiently described

by statistical language models.

Decomposing the unsupervised language acquisition task

into this two-layered hierarchical approach not only simpli-

fies the problem but also goes in hand with the two layers

of human language: the low-level acoustic and the high-level

textual layer.

A practical application for the unsupervised learning of

a language is the unsupervised training of an automatic

speech recognizer directly from audio recordings, without

using labeled data, i.e., without knowing the text that has

been spoken [1], [2]. This is of particular interest because

*Oliver Walter and Reinhold Haeb-Umbach are with the Depart-
ment of Communications Engineering, University of Paderborn, Germany.
{walter,haeb}@nt.uni-paderborn.de

**Sourish Chaudhuri and Bhiksha Raj are with the Language
Technologies Institute, Carnegie Mellon University, Pittsburgh, USA.
{sourishc,bhiksha}@cs.cmu.edu

The work was in part supported by Deutsche Forschungsgemeinschaft
under contract no. Ha 3455/9-1 within the Priority Program SPP1527
”Autonomous Learning” and by the NSF grant 1017256

obtaining labeled training data can be a very tedious task

and is costly. Of particular interest are semi-supervised

approaches which employ a little amount of labeled data for

initialization and large amounts of unlabeled data for final

model traning. An interesting application is the bootstrapping

of a recognizer for a low-resource language, where little or

no annotated training data is available, from an acoustically

similar language, of which labeled training data is abundant.

A phoneme recognizer trained on the high-resource language

can then be employed to transcribe the unlabeled data of the

low-resource language into a phone sequence. Subsequently,

with the techniques discussed in this paper a dictionary and

a language model can be learned in an unsupervised manner

for the low-resource language.

Another example is a machine, for example a robot, which

should be able to autonomously learn about it’s environment

and communicate with humans. By solving tasks a) and

b) above, the machine learns while listening to the human

interacting with it.

Yet another example is the semantic analysis of audio

[3]. Here, the input signal is audio, rather than speech,

and the task is to interpret a scene based on the sound

events recorded. Low-level audio patterns (e.g., hitting a ball,

applause) form high-level acoustic events (scoring of a goal

in a soccer match), and the task is to learn this ”acoustic

language” to infer the activity on the soccer field.

Note that the unsupervised training of the speech recog-

nizer does not provide semantics for the found patterns. In

an application, such as robot teaching, such semantics must

come from another knowledge source, e.g., by a human or by

another modality (video), such that audio-visual correlates

can be defined. Note, however, that only rather high-level

labels are required that define an action, rather than a low-

level transcription of the spoken input. The grounding of the

discoved word sequences, however, is beyond the scope of

this paper.

In [4] using very similar statistical modes to those to be

used here, human motions were segmented which could then

be used to train a robot to mimic these motions.

Concerning task a) above, several solutions can be found

in the literature. Variants of dynamic time warping (DTW)

and different clustering techniques have been proposed to

find recurrent sequence pattern in audio [5], [6]. In [2] we

used dynamic time warping and k-means++ clustering to

cluster single digit utterances. We also experimented with

connected digit sequences and were able to train a speech

recognizer for connected digit sequences in an unsupervised

manner at a word error rate of about 13% [7]. All techniques,

however, suffer from a high computational load.

An alternative way of finding basic acoustic buildings

blocks of a language is the use of sparse coding approaches.

For example, non-negative matrix factorization (NMF) can

be employed to decompose an acoustic recording into a

set of basic building blocks and their activations [8]. In

[9] histogram of acoustic co-occurrences, defined from an

NMF analysis are used for unsupervised phone discovery. A

shortcoming of the basic NMF is that temporal correlations,

which are so typical of speech, are not captured well. In

[10] an extension to standard NMF was proposed, where

a time series of acoustic vectors is considered as a basic

object. One disadvantage of this so-called convolutive NMF

is that it cannot model differences in speaking rate well. To

overcome this disadvantage [11] proposed the chaining of

basic elements in an object using a Markov chain. Using a

Markov chain allows to consider variations in speaking rate

and duration for the basic objects.

Including task b) above, in [3] a hierarchical approach is

described for unsupervised structure discovery for semantic

analysis of audio. On the first level basic acoustic patterns,

called acoustic unit descriptors (AUDs), representing a basic

sound, are discovered using a clustering approach. On the

next level patterns consisting of sequences of AUDs, called

events, are discovered. An event, which corresponds to the

notion of a word in speech, is defined by a characteristic

distribution of AUDs. The used model, however, does not

capture any temporal information as to how AUD sequences

evolve over time to define events. This is an obvious short-

coming, because not only the presence of certain acoustic

patterns but, equally important, the temporal succession of

these patterns define the units at the higher abstraction level,

i.e., the events.

The discovery of recurrent phone sequences that form

words is similar to the problem of unsupervised word

segmentation. In [12], a Bayesian approach is presented,

where both the lexicon (the transcription of a word in terms

of characters) and the language model (i.e., the n-gram
probability of words) is simultaneously estimated along with

the segmentation of the given character string into words.

The language model is based on the Pitman-Yor process,

which provides a random distribution over discrete probabil-

ity distributions over infinite sample spaces (in our case the

set of words, which may be infinitely large) [13]. This model

has a number of advantages. First, the number of words need

not be known in advance and can be, in fact, arbitrarily large.

Second, the model focuses on the temporal information,

i.e. a word is described by its characteristic sequence of

acoustic units. Third, a priori information is accounted for.

One might wonder which a priori information is available in

a completely unsupervised setup. Well, the Zipf’s law, which

states that the frequency of a word is inversely proportional

to its rank in the frequency table, holds universally for many

languages, both natural and artificial [14].

We adopt the unsupervised word segmentation approach

of [12] here to discover words from phoneme input. For

the word segmentation, a hierarchical Pitman-Yor process is

employed, where the hierarchy represents different values of

the history size n − 1 of the n-gram language model. A

phone language model is nested within the word language

model such that the unigram word model is backed of

by a m-gram model at the phone (or character level). We

will show how progressively more refined language models

improve precision and recall of the discovered words. We

are not concerned with how to obtain the phone sequence

from audio, though, and refer to prior work [2] [7].

The paper is organized as follows. In the next section

we give an overview of the unsupervised word segmentation

approach of [12] and show how it is applied to the task of

phone segmentation. Next, the basic concept of hierarchical

Pitman-Yor language models is presented. In section IV we

present some results using character and phone sequences as

input to the segmentation algorithm. Finally in section V we

give an outlook for further developments.

II. UNSUPERVISED WORD SEGMENTATION

In the following we will describe the algorithm used for

unsupervised word segmentation of [12].

The problem of word segmentation can be described as

follows: Given a character sequence (sentence) cT1 of T
characters ct

cT1 = [c1, . . . , cT] , (1)

we want to segment this sequence into I words wi

w = [w1, . . . , wI] (2)

in which the words don’t overlap and completely cover the

character sequence. In the experiments reported later cT1 will

be either a character string or a phone sequence.

The word sequence is considered as being generated by a

Markov chain of some order n−1. This leads to a context of

n−1 words for the current word and results in the predictive

probability

wi ∼ Pr (wi|wi−n+1, . . . , wi−1) . (3)

This is generally called a n-gram language model. The joint

probability of a word sequence can then be calculated using

Pr(w) ≈

I
∏

i=1

Pr (wi|wi−n+1, . . . , wi−1) . (4)

Given the predictive probability calculated using a n-gram
language model and a lexicon mapping words to character or

phone sequences, we have a generative model for generating

sentences consisting of character or phone sequences making

up words. To do the segmentation of a character or phone

sequence into words we have to find the word segmentation

that maximizes the probability of the word segmentation

given a sequence of characters:

ŵ = argmax
w

Pr(w|cT1) (5)

This can be done by using a generalized forward backward

algorithm.

Let us first consider the unigram case n = 1. Let α[t]
denote the probability of the character string ct1 ending at

t. Further, let the variable qt denote the distance to the

last ending word. To be specific, qt = k denotes that

ct−k+1, . . . , ct =: ctt−k+1 is a word beginning at t − k + 1
and ending in t. Then we can derive the following recursion:

α[t] = Pr(ct1) =

t
∑

k=1

Pr(ct1, qt = k) (6)

=

t
∑

k=1

Pr(ct−k
1 , ctt−k+1) (7)

=

t
∑

k=1

Pr(ctt−k+1|c
t−k
1) Pr(ct−k

1) (8)

where we indicated the word boundary at t− k by the sub-

and superscripts of the character strings.

Using the unigram approximation, Pr(ctt−k+1|c
t−k
1) =

Pr(ctt−k+1), we arrive at

α[t] =
t

∑

k=1

Pr(ctt−k+1) Pr(c
t−k
1)

=
t

∑

k=1

Pr(ctt−k+1)α[t− k]. (9)

which is a recursion on the α variable. The recursion is

started with α[0] = 1.
The bigram case is more interesting. Let α[t][k] represent

the probability of the string ct1, with the last k characters

being a word. We can develop the following recursion:

α[t][k] = Pr(ct1, qt = k)

=
t−k
∑

j=1

Pr(ct1, qt = k, qt−k = j) (10)

=

t−k
∑

j=1

Pr(ct−k−j
1 , ct−k

t−k−j+1, c
t
t−k+1) (11)

=

t−k
∑

j=1

Pr(ctt−k+1|c
t−k
t−k−j+1, c

t−k−j
1)

Pr(ct−k−j
1 , ct−k

t−k−j+1). (12)

Using the bigram approximation, we obtain for k < t:

α[t][k] =

t−k
∑

j=1

Pr(ctt−k+1|c
t−k
t−k−j+1) Pr(c

t−k−j
1 , ct−k

t−k−j+1)

=

t−k
∑

j=1

Pr(ctt−k+1|c
t−k
t−k−j+1) Pr(c

t−k
1 , qt−k = j)

=

t−k
∑

j=1

Pr(ctt−k+1|c
t−k
t−k−j+1)α[t− k][j]. (13)

For k = t we use:

α[t][t] = Pr(ct1| < s >)α[0][0]. (14)

where the recursion is initialized with α[0][0] = 1. We

assume a sentence start marker < s > at the beginning of

the string.

In the backward step we will use Gibbs sampling. We

iteratively resample the word segmentation by drawing the

length j of the previous word as shown in Algorithm 1 [12].

We assume a sentence end marker < /s > at the end of the

sentence.

Algorithm 1 Backward sampling

1: t = T + 1, k = 1, i = 0, w0 =< /s >
2: while t > k do

3: j ∼ Pr
(

wi|c
t−k
t−k−j+1

)

α[t− k][j]

4: wi+1 = [ct−k−j+1, . . . , ct−k]
5: i = i + 1
6: t = t− k
7: k = j
8: end while

III. PITMAN-YOR LANGUAGE MODEL

The presented segmentation algorithm relies on unigram

and bigram language model probabilities. However, these are

not known and need to be learnt along with the segmentation.

Furthermore, the number of words and their definitions in

terms of character sequences changes as the hypothesized

segmentation changes. Because of this we need a language

model which can deal with unknown words, an unknown

number of words, and which allows to raise or lower word

probabilities according to the hypothesized segementation,

including the case that words are completely removed from

the lexicon if they are no longer present in the segmentation.

In [12] the so called Nested Pitman-Yor language model

(NPYLM) is used. The NPYLM is an extension to the Hi-

erarchical Pitman-Yor language model (HPYLM) presented

in [13]. Finally the hierarchical Pitman-Yor language model

is a language model based on the Pitman-Yor process [15],

a Bayesian nonparametric model.

The Pitman-Yor process provides a random distribution

over discrete probability distributions over infinite sample

spaces and is a generalization of the Dirichlet process:

G ∼ PY (d, θ,G0) . (15)

A draw form the Pitman-Yor process delivers a discrete

distributionG. The Pitman-Yor process has three parameters:

a base distribution G0, which can be understood as a mean

over the distribution of distributions. Additionally a discount

parameter 0 ≤ d < 1 and a strength parameter θ > −d
are used, which control the variability around the base

distribution. The distribution G delivered by the Pitman-Yor

process follows Zipf’s power law property, i.e., the elements

of G, i.e., the word probabilities, are inversely proportional

the word’s rank in the probability table.

An extension to the Pitman-Yor process is the Hierar-

chical Pitman-Yor process which is used for the HPYLM.

For language modeling with a known number of words

the base distribution G0 is usually assumed to be a uni-

form distribution over all words (i.e., a zerogram). Using

the Pitman-Yor process a unigram distribution is drawn

via G∅ ∼ PY (d0, θ0, G0). Higher order n-gram distribu-

tions Gu ∼ PY
(

d|u|, θ|u|, Gπ(u)

)

can be generated, where

u = [wi−n+1, . . . , wi−1] is the context of length |u| = n−1
and π(u) is the shorter context with the first word removed.

The predictive probability using the HPYLM is given by

[13]

Pr(w|u, S,Θ) =
cuw· − d|u|tuw

θ|u| + cu··

+
θ|u| + d|u|tu·

θ|u| + cu··
Pr(w|π(u), S,Θ),

(16)

where S = {c, t} and Θ = {d, θ} is the set of parameters

for each context in the HPYLM and Gu := Pr(w|u, S,Θ).
This predictive probability can be interpreted by the notion

of a Chinese restaurant. The counts cuwk denote the counts

for word w in context u at a so called table k and tuw the

number of tables for word w in context u. The character ’·’
is used as a wildcard in the sense that if a symbol in the

subscript is replaced by ’·’, the corresponding symbol can

assume any value. For example, cuw· =
∑

k cuwk.

Due to space limitations we will not describe the Chinese

restaurant process in detail. We refer the reader to the

literature, e.g., [13], [16], for details.

Gibbs sampling is used to obtain samples for S and Θ. The

sampling of the hyper parameters Θ is described in [17]. To

sample the parameters S either an existing table k is sampled

for the word w whose count is to be increased in context u

according to

Pr(k|u, S−w,Θ) ∝
max

(

0, c−w
uwk − d|u|

)

θ|u| + c−w
u··

(17)

or a new table k = knew is sampled according to

Pr(k = knew|u, S
−w,Θ) ∝

θ|u| + d|u|t
−w
u·

θ|u| + c−w
u··

Pr(w|π(u), S−w ,Θ)
(18)

If k = knew is chosen the word counts are recursively

increased in the shorter context π(u). The table counts

tuw are increased accordingly. The superscript −w denotes

the parameters S with the word count for w decreased in

the according context. A word count can be decreased by

drawing the table k form which the word count is to be

decreased according to

Pr(k|u, S) ∝ cuwk (19)

If a table becomes empty the word count is recursively

decreased from the shorter contexts. The table counts are

adjusted accordingly.

Finally the NPYLM is an extension to the HPYLM which

replaces the uniform base distribution G0 over known words

by a distribution over all possible character sequences that

can be generated using a finite set of characters. This

extension allows to use unknown words in the word level

language model. When evaluating the probability of a word

at the base distribution the word is expanded into its character

sequence and the probability of the character sequence

wi = (c1, . . . , ck) is calculated by

Pr(wi) ≈

k
∏

i=1

Pr (ci|ci−n+1, . . . , ci−1) . (20)

The predictive probability Pr (ci|ci−n+1, . . . , ci−1) is again

estimated using a character level HPYLM in exactly the

same manner as for the word level. If a word count is to

be increased or decreased at the base distribution of the

word HPYLM, the word will be expanded into its character

sequence and the counts for the according characters are

increased or decreased in the character HPYLM. Finally

as the base distribution for the character level HPYLM a

uniform distribution over all characters is used.

For unsupervised word segmentation the Algorithm 1 is

used together with the NPYLM. Several iterations are done

over all sentences until the word segmentation converges.

Before segmenting one sentence the word counts for the

words of this sentence are decreased in the NPYLM, then

the segmentation is done and the word counts for the newly

found words are increased in the NPYLM and the word is

added to the lexicon. This is also referred to as blocked Gibbs

sampling as the parameters of a whole sentence is resampled

in one step.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the segmentation algorithm

we performed experiments on the WSJCAM0 [18] acoustic

model training data, which is a subset of sentences of the

Wall Street Journal (WSJ0) [19] acoustic model training

database.

To prepare the input data for the algorithm segment-

ing characters into words, we removed all word delimiters

and punctuations from the text prompts of the WSJCAM0

database and transformed all characters to upper case.

To generate the input for the segmentation of phoneme

sequences into words, the BEEP dictionary was employed

to transcribe the words in terms of phoneme sequences

[20]. For the translation from words to phoneme sequences

only one unique phoneme sequence per word was used,

i.e., pronunciation variants have not been considered. For

the phoneme transcriptions we removed all silences and

short pauses. We also removed duplicate sentences from the

resulting word and phoneme transcriptions which left 5612

sentences with word transcriptions and 5621 sentences with

phoneme transcription.

The phoneme transcriptions were used to evaluate the

performance of the word segmentation algorithm because in

a next step we want to use the output of a speech recognizer

delivering phoneme sequences as input to the segmentation

algorithm.

The transcriptions contain an average of 17 words per

sentence amounting to a total of 95453 tokens for the

words and 95629 tokens for the phoneme sequences (running

words). There was an average of 5.3 characters and 4.5

phonemes per word. The number of unique words is 10660

Training data:

POWERFINANCIALISAFINANCIALSERVICESCONCERNTHATISSIXTYNINEPE

RCENTHELDBYPOWERCORPORATIONOFCANADAAMONTREALBASEDHOL

DINGCOMPANY

m = 4:
PO WER F INANCIAL IS A FINAN CIAL SERVICES C ONCERN THAT IS

SIXTY NINE PERCENT HELD BY PO WER CORP ORATION OF C ANADA A

MON TREAL B ASED HOLDING COMPANY

m = 6:
POWER FINANCIAL IS A FINANCIAL SERVICES CONCERN THAT IS

SIXTY NINE PERCENT HELD BY POWER CORPORATIONOF CANADA A

MONTREAL BASED HOLDING COMPANY

m = 8:
POWER FINANCIAL IS A FINANCIAL SERVICES CONCERN THAT IS SIXTY

NINE PERCENT HELDBY POWER CORPORATION OF CANADA A MONTRE-

ALBASED HOLDINGCOMPANY

Fig. 1. Input data and segmentation result with m ∈ {4, 6, 8}

and the number of unique phoneme sequences is 10506 in

the transcriptions, which we call lexicon.

We let the word segmentation algorithm run for 100

iterations on the word and phoneme sentences and examined

the output of the last iteration for the segmentation result.

The order n was set to 2 for the word HPYLM, and The

order m of the character HPYLM was varied from 4 to 8

to evaluate the influence of the order of the character level

language model to the segmentation result.

Fig. 1 shows an example for the segmentation results of

one training sentence at the orders m ∈ {4, 6, 8}. It can be

seen that with m = 4 the text is segmented into smaller

fragments which don’t correspond to meaningful words

while with increasing order of the character language model

the quality of the segmentation result increases. It can also be

seen that with m ∈ {6, 8} the segment boundaries are mostly

found at the correct positions resulting in meaningful words

being discovered, except of some word boundaries which are

skipped. The missing boundaries result in concatenations of

word which frequently occur in pairs. Further processing or

more data might be needed to split these concatenated words

into single words as well.

Tables I and II show the evaluation of the segmentation

results on the word level in terms of the token precision

(P), token recall (R), token f-score (F), the number of tokens

(running words), lexicon precision (LP), lexicon recall (LR),

lexicon f-score (LF) and the number of unique words in the

lexicon, while the former (token) refers to the total number

of running words and the second (lexicon) to the number

of unique words. Tables III and IV shows the corresponding

evaluation with the phoneme sequences at the input of the

segmentation algorithm.

P, R and F are defined as follows.

P =
Nc

Nf

, R =
Nc

N
(21)

F = 2
P · R

P +R
. (22)

Here N is the total number of tokens, i.e., running words

in the ground truth transcription, Nf is the overall number

of discovered tokens/words and Nc the number of correctly

TABLE I

WORD TOKEN PRECISION, RECALL AND F-SCORE FROM CHARACTER

INPUT AS A FUNCTION OF CHARACTER LANGUAGE MODEL ORDER

m ∈ [4, 8]

m 4 5 6 7 8

P 42.9 59.8 67.7 69.2 71.1
R 48.7 52.5 58.2 58.4 60.5
F 45.6 55.9 62.6 63.4 65.4

Words 108383 84024 81983 80576 81309

TABLE II

WORD LEXICON PRECISION, RECALL AND F-SCORE FROM CHARACTER

INPUT AS A FUNCTION OF CHARACTER LANGUAGE MODEL ORDER

m ∈ [4, 8]

m 4 5 6 7 8

LP 32.9 36.5 42.7 45.6 48.5
LR 46.6 59.6 62.7 63.8 64.2
LF 38.5 45.3 50.8 53.2 55.2

Words 15096 17405 15662 14901 14104

discovered tokens/words. A token is defined by the mapping

of the character sequence between two discovered boundaries

to a word. A correctly discovered token is a token whose

character string and therefore whose boundaries match with

the ones in the ground truth transcriptions.

For the LF, LP and LF scores, N denotes the number of

unique words present in the ground truth lexicon, Nf the

number of unique words discovered during word segmenta-

tion and Nc the number of correctly discovered words. A

correctly discovered word is a word that was discovered in

the segmentation process and also is contained in the ground

truth lexicon.

From the tables it can be seen that all scores increase with

increasing order of the character language model and that the

number of found words is in the same order as the actual

number of words in the data.

There is only a small difference between the results on the

phoneme and word level. The number of discovered words

also decreases slightly with increasing language model order,

except of a peak at m = 5 which we cannot explain yet.

This evaluation demonstrates the potential of the seg-

mentation algorithm and the importance of considering the

temporal context during the segmentation process.

TABLE III

WORD TOKEN PRECISION, RECALL AND F-SCORE FROM PHONEME

SEQUENCE INPUT AS A FUNCTION OF PHONEME LANGUAGE MODEL

ORDER m ∈ [4, 8]

m 4 5 6 7 8

P 54.2 67.6 68.0 72.4 73.3
R 49.9 51.2 52.1 56.8 57.1
F 52.0 58.3 59.0 63.7 64.2

Words 88070 72464 73294 74979 74471

TABLE IV

WORD LEXICON PRECISION, RECALL AND F-SCORE FROM PHONEME

SEQUENCE INPUT AS A FUNCTION OF PHONEME LANGUAGE MODEL

ORDER m ∈ [4, 8]

m 4 5 6 7 8

LP 33.0 37.1 38.7 43.7 44.8
LR 56.0 65.2 64.0 65.6 66.1
LF 41.5 47.3 48.3 52.5 53.4

Words 17839 18466 17359 15775 15505

V. CONCLUSIONS AND OUTLOOK

In this contribution we have applied a word segmentation

algorithm to the unsupervised word discovery from phonetic

or character input. The segmentation exploits the fact that

certain phoneme (or character) sequences are recurrent thus

make up words. Word and character sequence probabilities

are learnt alongside the segmentation. Since the segmentation

changes in the course of the iterations, words and word

probabilities need to be ajusted constantly. This is achieved

by using a Nested Pitmal-Yor language model which is able

to cope with an unknown and possibly unlimited number

of words. By backing off to a character language models

unknown words can be accounted for.

We have presented results on the WSJCAM0 large vocab-

ulary database and shown how the quality improves with the

order of the character/phoneme language model employed.

So far we only used error free phoneme transcriptions and

transcriptions without any variations in pronunciation.

As we want to learn a language directly from acoustic

data we have to deal with further challenges. The first

challenge is that real acoustic recordings, possibly form

multiple speakers, will most likely contain variations of

pronunciation for a word. In [21] an algorithm was proposed

which, given a segmented character string, basically clusters

similar words together, exploiting contextual information of

the word provided by a language model. Using contextual

information helps to cluster similar words as similar words

will also most likely appear in similar context.

The second challenge is that we will have to deal with

noisy data, especially with insertions, deletions and substitu-

tions in the phoneme transcriptions provided by a phoneme

recognizer. In [1] an extension to the word segmentation

algorithm of [12] was proposed to do the word segmentation

not only over the best recognition result (transcription) of a

phoneme recognizer but over a lattice of possible phoneme

sequences. Using a lattice will provide the advantages that

a) more variants of a recognition result can be considered

during the segmentation process and b) that individual vari-

ants can be weighted by their likelihood, provided by the

recognizer. Given the lattice, the likelihoods and the language

model, the algorithm can choose the best phoneme sequence

with respect to all other data already seen.

REFERENCES

[1] G. Neubig, M. Mimura, and T. Kawahara, “Bayesian learning of a
language model from continuous speech,” IEICE TRANSACTIONS on

Information and Systems, vol. 95, no. 2, pp. 614–625, 2012.
[2] J. Schmalenstroeer, M. Bartek, and R. Haeb-Umbach, “Unsupervised

learning of acoustic events using dynamic time warping and hierar-
chical k-means++ clustering,” in Twelfth Annual Conference of the

International Speech Communication Association, 2011.
[3] S. Chaudhuri and B. Raj, “Unsupervised structure discovery for

semantic analysis of audio,” in Advances in Neural Information

Processing Systems 25, 2012, pp. 1187–1195.
[4] T. Taniguchi and S. Nagasaka, “Double articulation analyzer for

unsegmented human motion using pitman-yor language model and
infinite hidden markov model,” in System Integration (SII), 2011

IEEE/SICE International Symposium on. IEEE, 2011, pp. 250–255.
[5] A. S. Park and J. R. Glass, “Unsupervised pattern discovery in speech,”

Audio, Speech, and Language Processing, IEEE Transactions on,
vol. 16, no. 1, pp. 186–197, 2008.

[6] R. Flamary, X. Anguera, and N. Oliver, “Spoken wordcloud: Clus-
tering recurrent patterns in speech,” in Content-Based Multimedia

Indexing (CBMI), 2011 9th International Workshop on. IEEE, 2011,
pp. 133–138.

[7] O. Walter, J. Schmalenstroeer, and R. Haeb-Umbach, “A novel ini-
tialization method for unsupervised learning of acoustic patterns in
speech,” University of Paderborn Department of Communications
Engineering, FGNT Technical Report FGNT-2013-01, Mar. 2013.

[8] D. D. Lee, H. Seung, et al., “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–
791, 1999.

[9] M. Van Segbroeck et al., “Unsupervised learning of time–frequency
patches as a noise-robust representation of speech,” Speech Commu-

nication, vol. 51, no. 11, pp. 1124–1138, 2009.
[10] P. D. O’Grady and B. A. Pearlmutter, “Discovering speech phones

using convolutive non-negative matrix factorisation with a sparseness
constraint,” Neurocomputing, vol. 72, no. 1, pp. 88–101, 2008.

[11] M. Nakano, J. Le Roux, H. Kameoka, Y. Kitano, N. Ono, and
S. Sagayama, “Nonnegative matrix factorization with markov-chained
bases for modeling time-varying patterns in music spectrograms,”
Latent Variable Analysis and Signal Separation, pp. 149–156, 2010.

[12] D. Mochihashi, T. Yamada, and N. Ueda, “Bayesian unsupervised
word segmentation with nested pitman-yor language modeling,” in
Proceedings of the Joint Conference of the 47th Annual Meeting of the

ACL and the 4th International Joint Conference on Natural Language

Processing of the AFNLP: Volume 1-Volume 1. Association for
Computational Linguistics, 2009, pp. 100–108.

[13] Y. W. Teh, “A hierarchical bayesian language model based on pitman-
yor processes,” in Proceedings of the 21st International Conference on

Computational Linguistics and the 44th annual meeting of the Associ-

ation for Computational Linguistics. Association for Computational
Linguistics, 2006, pp. 985–992.

[14] C. D. Manning and H. Schütze, Foundations of statistical natural

language processing. MIT press, 1999.
[15] J. Pitman and M. Yor, “The two-parameter poisson-dirichlet distribu-

tion derived from a stable subordinator,” The Annals of Probability,
vol. 25, no. 2, pp. 855–900, 1997.

[16] B. Frigyik, A. Kapila, and M. Gupta, “Introduction to the Dirichlet
distribution and related processes,” University of Washington Electrical
Engineering Department, UWEE Technical Report UWEETR-2010-
0006, Dec. 2010.

[17] Y. W. Teh, “A bayesian interpretation of interpolated kneser-ney,”
2006.

[18] J. Fransen, D. Pye, T. Robinson, P. Woodland, and S. Young, WSJ-

CAMO corpus and recording description. Citeseer, 1994.
[19] D. B. Paul and J. M. Baker, “The design for the wall street journal-

based csr corpus,” in Proceedings of the workshop on Speech and

Natural Language. Association for Computational Linguistics, 1992,
pp. 357–362.

[20] Beep dictionary. [Online]. Available: http://svr-
www.eng.cam.ac.uk/comp.speech/Section1/Lexical/beep.html

[21] S. Goldwater, J. Eisenstein, and M. Elsner, “Bootstrapping a unified
model of lexical and phonetic acquisition,” 2012.

