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ABSTRACT

We present a novel method to exploit correlations of adja-

cent time-frequency (TF)-slots for a sparseness-based blind

speech separation (BSS) system. Usually, these correlations

are exploited by some heuristic smoothing techniques in the

post-processing of the estimated soft TF masks. We propose

a different approach: Based on our previous work with one-

dimensional (1D)-hidden Markov models (HMMs) along the

time axis we extend the modeling to two-dimensional (2D)-

HMMs to exploit both temporal and spectral correlations in

the speech signal. Based on the principles of turbo decoding

we solved the complex inference of 2D-HMMs by a modified

forward-backward algorithm which operates alternatingly

along the time and the frequency axis. Extrinsic informa-

tion is exchanged between these steps such that increasingly

better soft time-frequency masks are obtained, leading to im-

proved speech separation performance in highly reverberant

recording conditions.

1. INTRODUCTION

The goal of BSS is to extract individual target speech sig-

nals from a noisy mixture captured by a sensor array. The

BSS technique for speech dealt with in this paper can be used

in many applications of multichannel speech enhancement in-

cluding hands-free telecommunication and automatic meeting

note taking.

Let us assume a mixture of I independent source sig-

nals Si(m,k), i = 1:I, captured by D microphones as

Xj(m,k), j = 1:D in the N-point short-time Fourier trans-

form (STFT)-domain, where m = 1:M is the time frame

index and k = 1:K,K = N/2+1 denotes the frequency index.

We collect the sensor signals in a D×1 observation vector

X := [Xj ]j=1:D where we used the notation [·]j;i to define the

element on the j-th row and i-th column of a matrix. Note,

that if the matrix reduces to a column vector we omit the

column index. In a noisy and reverberant environment the

observation vector can approximated by

X(m,k) ≈
∑I

i=1
Hi(k)Si(m,k) +N(m,k), (1)

This work was supported by DFG under contract number HA 3455/8-1.

where Hi := [Hij ]j=1:D is the D×1 vector consisting of mul-

tiplicative transfer functions modeling the signal path from

source i to microphone j and N := [Nj ]j=1:D is the D×1

noise vector.

Since speech signals are sparse in the STFT domain a

common assumption for BSS is that at any TF-slot (m,k) only

a single source is active. Based on this assumption the obser-

vation model (1) can be reformulated by

X(m,k) =

{

N(m,k) if Z(m,k)=0

Hi(k)Si(m,k) +N(m,k) if Z(m,k)=i
(2)

where the discrete hidden random variable Z(m,k)=i for i ∈

{1, . . . , I} indicates that source i is active and Z(m,k)=0 indi-

cates that only noise is present in a given TF-slot.

The pivotal issue of sparseness-based BSS approaches

is to jointly estimate parameters of the mixing system and

compute the posterior probability (PP), e.g. to uncover

the identity of Z(m,k). Conventional methods compute

the PP solely based on information in the current TF-slot

P (Z(m,k)|X(m,k)), e.g. [1, 2, 3]. Thus, they ignore the

strong correlations among adjacent TF-slots both in time and

frequency of speech signals. In [4] we employ a 1D-HMM

for each frequency bin independently to exploit the tempo-

ral correlations by computing the PP P (Z(m,k)|X(1:M,k))

with the forward-backward algorithm (FBA). An extension to

also exploit the spectral correlations asks for the use of 2D-

HMMs and consequently the computation of the PP based on

information in all observations P (Z(m,k)|X(1:M,1:K)). Un-

fortunately, exact computation of the PP in large 2D-HMMs

is computationally infeasible. Recently, we proposed an it-

erative algorithm for computation of the PP which operates

by alternating between the time axis and the frequency axis

where information is exchanged between these steps [5]. In

this paper we review this algorithm and show how to use this

iterative decoding algorithm for noisy BSS.

2. OBSERVATION MODEL AND 2D-HMM

Due to the highly non-stationary behavior of the speech

sources it is difficult to obtain an accurate and computation-

ally tractable observation model p (X(m,k)|Z(m,k)) which

is necessary for statistical interference. We propose to split

EUSIPCO 2013 1569742637
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the information contained in the observation vector into two

independent feature parts:

p (X|Z) = p (ϕ|Z) p (Y|Z) . (3)

The first part is the averaged a-posteriori signal-to-noise ratio

(SNR) of the sensor array:

ϕ(m,k) :=
1

D
X

H(m,k)Φ−1
NN

(k)X(m,k), (4)

where ΦNN(k) = E[N(k)NH(k)] is the power spectral den-

sity (PSD) matrix of the stationary noise vector which can be

estimated in speech absence periods. This random variable

can be modeled by scaled chi-squared distributions [6]:

p (ϕ|Z=i; ξi) = cX (r, ξi) ϕ
r

2
−1 exp

{

−ϕr

2(1 + ξi)

}

, (5)

where cX (r, ξi) is the normalization constant, r = 2D is the

degree of freedom and ξ0 = 0 for noise-only and ξ1 = · · · =

ξI = ξ are the fixed average a-priori SNR over all sources and

all time indices.

The second part is the frequency and length normalized

observation vector (NOV) suggested in [1]. Arbitrarily se-

lecting the first sensor as the reference the NOV is given by:

Ỹj(m,k) :=
∣

∣Xj(m,k)
∣

∣ exp

{

i
arg[Xj(m,k)X∗

1 (m,k)]

2(k-1)fsdmax(Kcv)
−1

}

(6)

Y(m,k) := Ỹ(m,k)
/∥

∥

∥
Ỹ(m,k)

∥

∥

∥
(7)

where Ỹ := [Ỹj ]j=1,...,D, fs is the sampling frequency, cv is

the wave propagation velocity and dmax is the maximum dis-

tance between the reference sensor and all other sensors. The

benefit of frequency normalization is that it allows us to tie all

frequencies components together but requires approximately

linear phase response and thus the absence of spatial aliasing.

The statistics of the NOV can be modeled by a complex

Watson distribution:

p (Y|Z=i;Wi, κi) = cW (D,κi) exp

{

κi

∣

∣

∣
W

H
i Y

∣

∣

∣

2
}

, (8)

where cW (D, κi) is the normalization constant, κ0 = 0 with

an arbitrary W0 for the noise-only case and κ1 = · · · = κI =

κ for the case that speech is present cases. Due to the fre-

quency normalization the D×1 dimensional normalized mean

orientation vector Wi is constant for all frequency bins which

is different from [4]. This simplification avoids the inner per-

mutation problem and facilitates exploitation of spectral cor-

relations.

To exploit temporal and spectral correlations we con-

sider Z(m,k) as a 2D random Markov process as depicted

in Fig. 1. A homogeneous and ergodic Markov process

in equilibrium is assumed. Thus, the (I+1)× 1 a priori

probability (APP) vector for each hidden state is π :=

[P (Z(m,k)=i)]i=0:I ∀m, k. The 2D-HMM requires the spec-

ification of a 3D transition matrix with 3Dt(j1, j2, i) :=

P (Z(m,k)=i|Z(m-1,k)=j1, Z(m,k-1)=j2). We reduce the

complexity of the model by assuming that this transition ma-

trix is separable, i.e. it can be decomposed into a product of

horizontal transitions Ht(j, i) := P (Z(m,k)=i|Z(m-1,k)=j)

and vertical transitions Vt(j, i) := P (Z(m,k)=i|Z(m,k-1)=j).

Hence, we have

3Dt(j1, j2, i) =
Ht(j1, i)Vt(j2, i)

∑I
ĩ=0 Ht(j1, ĩ)Vt(j2, ĩ)

. (9)

The transition probabilities are collected in a (I+1)× (I+1)

horizontal transitions (HT)-matrix HT := [Ht(j, i)]j=0:I;i=0:I

and a vertical transition (VT)-matrix VT := [Vt(j, i)]j=0:I;i=0:I

of the same size. Note, that while temporal correlations are

stored in the HT-matrix, spectral correlations are stored in

VT-matrix.

X(m,k)

X(m,k-1)

X(m,k+1)

X(m-1,k)

X(m-1,k-1)

X(m-1,k+1)

X(m+1,k)

X(m+1,k-1)

X(m+1,k+1)

Z(m,k)

Z(m,k-1)

Z(m,k+1)

Z(m-1,k)

Z(m-1,k-1)

Z(m-1,k+1)

Z(m+1,k)

Z(m+1,k-1)

Z(m+1,k+1)

Fig. 1. Bayesian model of 2D-HMM

3. EXPECTATION MAXIMIZATION

In order to use the model above for BSS, we need to jointly

reveal the identity of Z(m, k) and to estimate the unknown

parameters of the observation model solely from the observa-

tions. We apply the Expectation Maximization (EM) formal-

ism to achieve this.

Let Θ(ν) := {W
(ν)
1 , . . . ,W

(ν)
I

} denote the set of unknown

parameters to be estimated, where ν is the iteration index. In

the E-step we have to collect the source dependent matrices

Φ
(ν)
YY,i

:=

∑M
m=1

∑K
k=1 γ

(ν)
i (m,k)Y(m,k)YH(m,k)

∑M
m=1

∑K
k=1 γ

(ν)
i (m,k)

(10)

using the posterior probability

γ
(ν)
i (m,k) := P

(

Z(m,k)=i|X(1:M,1:K);Θ(ν)
)

. (11)

Unfortunately, no efficient exact algorithms are known to

compute the PP in a large 2D-HMM and we have to fall back

to an approximate algorithm which is discussed in the next

section.

For the M-step we obtain the eigenvalue equation

Φ
(ν)
YY,i

W
(ν+1)
i = υ

(ν+1)
i W

(ν+1)
i . (12)

Since we want to maximize the likelihood the mean orienta-

tion W
(ν+1)
i is updated by the eigenvector corresponding to

the largest eigenvalue of the matrix Φ
(ν)
YY,i

. This computation

can be done very efficiently with the power iteration.

Initializing W
(0)
i using a modified version the algorithm

proposed in [7] which accounts for the frequency normaliza-

2
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tion, the E-step and the M-step are iterated until convergence.

We denote the final PP by γ
(∞)
i (m,k).

4. TURBO DECODING

To facilitate a compact notation we introduce the follow-

ing vector operators: The binary operators ◦ and ⊘ are the

element-wise product and the element-wise division of two

vectors, respectively. The binary rescaling operator of two

column vectors, denoted by the symbol ∝, is defined as

a ∝ b := b/(aT
b). If the first operand is a scalar then it

will be expanded to a vector of the same size as the second

operand by repetition. Thus, 1 ∝ b rescales the vector b so

that all elements sum up to 1. The rescaling operator has the

lowest precedence.

To derive an approximate algorithm for computation of

the PP, i.e. to decode the 2D-HMM, we propose to split the

decoding into horizontal and vertical processing steps and let

the steps exchange information between each other [5].

Let us derive the vertical processing (VP)-step where we

decode the 2D-HMM lattice column-by-column, but also ac-

count for information in the rows. For the m-th column we

ignore the vertical dependencies in all other columns. There-

fore, the VP-steps are independent from each other. This sim-

plification allows us to factorize the joint PDF

p (Z(m,k),X(1:M,1:K)) = P (Z(m,k)) ·

p (X(1:M,1:k-1)|Z(m,k)) · p (X(1:M,k+1:K)|Z(m,k)) ·

p (X(1:m-1,k)|Z(m,k)) · p (X(m+1:M,k)|Z(m,k)) ·

p (X(m,k)|Z(m,k)) . (13)

Fig. 2 depicts the statistical dependencies of VP-step in m-th

column.

Let us introduce the following (I+1)×1 vectors

o(m,k) := π ∝ [p (X(m,k)|Z(m,k)=i)]i=0:I , (14)

Vγ(m,k) := [P (Z(m,k)=i|X(1:M,1:K))]i=0:I , (15)

Vα(m,k) :=

[

p (X(1:M,1:k-1), Z(m,k)=i)

p (X(1:M,1:k-1))

]

i=0:I

, (16)

Vβ(m,k) :=

[

p (X(1:M,k+1:K)|Z(m,k)=i)

p (X(1:M,k+1:K))

]

i=0:I

, (17)

Vu(m,k) :=

[

p (X(1:m-1,k)|Z(m,k)=i)

p (X(1:m-1,k))
·

p (X(m+1:M,k)|Z(m,k)=i)

p (X(m+1:M,k))

]

i=0:I

, (18)

where o(m,k) is the observation evidence vector and Vγ(m,k)

is the vertical PP vector. The auxiliary variables Vα(m,k)

is the vertical forward prediction vector (FPV), Vβ(m,k) is

the vertical backward vector (BV) and Vu(m,k) is the vertical

junction vector (JV). As suggested by the factorization in (13)

the PP can be easily computed by

Vγ(m,k) = 1 ∝ o(m,k) ◦ Vu(m,k) ◦ Vα(m,k) ◦ Vβ(m,k)

(19)

if the auxiliary variables are given.

The vertical FPV and vertical BV can be recursively com-

puted by a slightly modified version of the FBA:

Vα(m,k) = 1 ∝ VT
T (Vα(m,k-1) ◦ o(m,k-1) ◦ Vu(m,k-1)) ,

(20)

Vβ(m,k) = π ∝ VT (Vβ(m,k+1) ◦ o(m,k+1) ◦ Vu(m,k+1)) ,

(21)

where Vα(m,1) = π and Vβ(m,K) = [1, . . . , 1]T ∀m. If there

is no information in the temporal chains, which corresponds

to Vu(m,k) = [1, . . . , 1]T, then the modified FBA is equivalent

to the ordinary FBA along the spectral dependencies.

X(m,k)

X(m,k-1)

X(m,k+1)

X(m-1,k)

X(m-1,k-1)

X(m-1,k+1)

X(m+1,k)

X(m+1,k-1)

X(m+1,k+1)

Z(m,k)

Z(m,k-1)

Z(m,k+1)

Z(m-1,k)

Z(m-1,k-1)

Z(m-1,k+1)

Z(m+1,k)

Z(m+1,k-1)

Z(m+1,k+1)

Fig. 2. Statistical dependencies of vertical processing

Since the 2D-HMM is symmetric a similar set of equa-

tions can be derived for a horizontal processing (HP) ignor-

ing all other horizontal dependencies except for the consid-

ered row by substituting the indices in formulas of the VP,

see Fig. 3. Analogous to (15) - (18) we define the horizontal

FPV Hα(m,k), the horizontal BV Hβ(m,k), the horizontal JV

Hu(m,k) and the horizontal PP Hγ(m,k). The modified FBA

for the horizontal processing is given by:

Hα(m,k) = 1 ∝ HT
T (Hα(m-1,k) ◦ o(m-1,k) ◦ Hu(m-1,k)) ,

(22)

Hβ(m,k) = π ∝ HT (Hβ(m+1,k) ◦ o(m+1,k) ◦ Hu(m+1,k)) ,

(23)

Hγ(m,k) = 1 ∝ o(m,k) ◦ Hu(m,k) ◦ Hα(m,k) ◦ Hβ(m,k),

(24)

where Hα(1,k) = π and Hβ(M,k) = [1, . . . , 1]T ∀k.

The key to improve the modified FBA are the JVs Vu(m,k)

and Hu(m,k). It is easy to verify that the JV for the VP

Vu(m,k) can be computed by the FBA of the HP by

Vu(m,k) = (Hα(m,k)⊘ π) ◦ Hβ(m,k) (25)

if we set Hu(m,k) = [1, . . . , 1]T ∀m, k. The JV for the HP

Hu(m,k) can be computed by the FBA of the VP by

Hu(m,k) = (Vα(m,k)⊘ π) ◦ Vβ(m,k) (26)

if we set Vu(m,k) = [1, . . . , 1]T ∀m, k. Obviously, the JVs

are suboptimal since they are computed by ignoring the other

horizontal or vertical dependencies in the simplified model in

Fig. 2 and Fig. 3.

Now it seems reasonable to iterate the modified FBA in

3
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VP and HP to obtain increasingly better estimates. Arbitrar-

ily starting with Hu(m,k) = [1, . . . , 1]T ∀m, k we apply the

VP-step with the modified FBA in the equations (20) - (21).

Then, we compute the horizontal JV with eq. (26) to prepare

a HP-step using the equations (22) - (23). Now, we recompute

the augmented vertical JV with eq. (25) and start over with

a VP-step again. Thus, we arrived at an iterative decoding

scheme where we use the JVs to exchange extrinsic informa-

tion between VP and HP cycles. In practice the PPs are stable

only after several VP and HP cycles.

The principle to exchange extrinsic information between

alternating FBA processing steps is also known from turbo

decoding. The term extrinsic stresses the requirement that the

JVs should be an independent source of information. This,

however, can be only guaranteed in the first iteration, since

the interleaver, which ensures independence between the par-

tial coders/decoders in turbo codes, is not available in our ap-

plication.

X(m,k)

X(m,k-1)

X(m,k+1)

X(m-1,k)

X(m-1,k-1)

X(m-1,k+1)

X(m+1,k)

X(m+1,k-1)

X(m+1,k+1)

Z(m,k)

Z(m,k-1)

Z(m,k+1)

Z(m-1,k)

Z(m-1,k-1)

Z(m-1,k+1)

Z(m+1,k)

Z(m+1,k-1)

Z(m+1,k+1)

Fig. 3. Statistical dependencies of horizontal processing

5. SOURCE SIGNAL EXTRACTION

We propose a spatio-temporal filtering by beamforming fol-

lowed by a single channel post-filter to recover each source

signal where we use the final PP γ
(∞)
i (m,k) as an adaptation

control. For each source i ∈ {1, . . . , I} we compute the target

PSD matrix

Φtarget,i(k) :=

∑M
m=1 γ

(∞)
i (m,k)X(m,k)XH(m,k)
∑M

m=1 γ
(∞)
i (m,k)

(27)

and the distortion PSD matrix

Φdist,i(k) :=

∑M
m=1(1− γ

(∞)
i (m,k))X(m,k)XH(m,k)

∑M
m=1(1− γ

(∞)
i (m,k))

. (28)

According to the MaxSNR-beamforming approach [8] the

coefficients which are used for computing the intermediate

spatial filtering output

S̃i(m,k) := Ai(k) F
H
i (k)X(m,k). (29)

are given by the principal eigenvector Fi of the generalized

eigenvalue equation

Φtarget,i(k) Fi(k) = υi(k) Φdist,i(k) Fi(k). (30)

The required gain normalization Ai(k) can be found by

minimizing the difference between the averaged signal power

at all sensors and the beamforming output at the TF-slots

where the target signal is considered active:
(

∑M

m=1
γ
(∞)
i (m,k)

∣

∣

∣
S̃i(m,k)

∣

∣

∣

2
−

1

D

∑M

m=1
γ
(∞)
i (m,k) tr

(

X(m,k)XH(m,k)
)

)2

→ min (31)

This results in the following gain normalization factor:

Ai(k) :=

√

tr
(

Φtarget,i(k)
)

D Fi
H(k)Φtarget,i(k)Fi(k)

. (32)

The subsequent spectral subtraction based post-filtering

requires an estimate of the residual noise and crosstalk power

λi present in S̃i(m, k). A well known solution for this is to

apply recursive averaging

λi(m,k) :=
(

1−µi(m,k)
)

λi(m-1,k) + µi(m,k)
∣

∣

∣
S̃i(m,k)

∣

∣

∣

2
,

(33)

where the time variant learning factor µi(m,k) is depen-

dent on the target speech presence probability. The value of

µi(m,k) itself is driven by the posterior state probability

µi(m,k) := µmax

(

1−γ
(∞)
i (m,k)

)

, (34)

where µmax is some maximum learning rate. Thus, the learn-

ing factor µi(m,k) is high if the probability that the source i

is active in the considered TF-slot is low.

The final estimate of the clean target signal STFT is given

by

Ŝi(m,k) := Gi(m,k) S̃i(m,k), (35)

where Gi(m,k) is the gain function. Here, we employ the

Wiener filter gain

Gi(m,k) := max

{

ξi(m,k)

1+ξi(m,k)
, Gmin

}

, (36)

where ξi(m) is the instantaneous a-priori SNR. The lower

bound Gmin of the gain has to be chosen as a trade-off be-

tween reduction of musical tones and suppression of noise

and interferers. The instantaneous a-priori SNR is estimated

in the well known decision-directed way

ξi(m,k) = µAP

∣

∣

∣
Ŝi(m-1,k)

∣

∣

∣

2

λi(m-1,k)
+ (1−µAP)max {ζi(m,k)-1, 0} ,

(37)

where the weighting factor µAP controls suppression of

speech transients and ζi(m,k) := |S̃i(m,k)|2/λi(m,k) is the

single channel a-posteriori SNR.

6. SIMULATION RESULTS AND CONCLUSION

We experimentally evaluate the proposed BSS method in a

simulated reverberant enclosure in a setup similar to [1] with

4
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I = 3 speech source signals taken from the TIMIT database

(5 male and 5 female). Several utterances of one speaker were

concatenated to obtain signal lengths of 10 s each. A sensor

array with four sensors arranged at the vertices of regular

tetrahedron with lateral length of 2 cm is used. The speech

sources were randomly positioned around the microphone

array in 3 different locations. To simulate coherent noise

recordings of the fan noise of a video projector is placed

in the reverberant enclosure. The enclosed angles between

the positions of all sources are at least 30◦ to ensure spatial

diversity. The power ratio of the sources and the coherent

noise was about 10 dB. To every microphone white noise

at the level of −20 dB below signal power was added. The

time domain signals sampled at 16 kHz was converted into

STFT domain with 1024-point Blackman window with a

75% overlap.

The system performance was evaluated in terms of the

gain in signal-to-interference-ratio (SIR), signal-to-noise-

ratio (SNR) and signal-to-distortion-ratio (SDR) [9] between

the signals components at a reference sensor and the signal

components at the system output. To demonstrate the ef-

fectiveness of the application of 2D-HMMs we compare the

system performance with the case of using a 1D-HMM along

the time axis, i.e. exploiting temporal correlations only [4],

and with the case where the hidden states are assumed to be

independent and identically distributed (i.i.d.), i.e. neglecting

all correlations. Note, that [4] is modified to also use the

frequency normalization (6). In Fig. 4 the performance is

depicted as a function of the reverberation time T60.

A focus of this paper is to demonstrate the benefits of

exploiting correlations of adjacent TF-slots for noisy BSS.

These benefits can be clearly seen in the performance curves

in Fig. 4. Exploiting correlations results in improved perfor-

mance in all cases and w.r.t. all measures. For low rever-

beration times the performance of all cases is very high and

only very small advantages are gained from using 1D-HMMs

or 2D-HMMs. Although the model complexity of the 1D-

HMMs which were used in this evaluation are rigorously re-

duced compared to the 1D-HMMs we observe small but con-

sistent performance improvements for this case. If reverber-

ation time is increasing the performance advantage from us-

ing 2D-HMMs becomes apparent. Thus, we can conclude

that exploiting temporal and spectral correlations of adjacent

TF-slots is worthwhile for noisy BSS in highly reverberant

recording conditions.
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