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Abstract—In this paper we present a system for indoor
navigation based on received signal strength index information
of Wireless-LAN access points and relative position estimates.
The relative position information is gathered from inertial smart-
phone sensors using a step detection and an orientation estimate.
Our map data is hosted on a server employing a map renderer
and a SQL database. The database includes a complete multi-
level office building, within which the user can navigate. During
navigation, the client retrieves the position estimate from the
server, together with the corresponding map tiles to visualize the
user’s position on the smartphone display.

Index Terms—Smartphone, indoor navigation, map tile, fin-
gerprint

I. INTRODUCTION

In this paper we describe the client-server infrastructure of

an indoor navigation system at the University of Paderborn.

At the current project state the system is fully usable within

a 4-level building and the expansion to the other buildings on

the campus is scheduled.

Indoor navigation and pedestrian dead reckoning has been

a research topic for several years. The former mostly employ

the fingerprinting method, i.e. the measured received signal

strength index (RSSI) of WLAN access points is compared

with those from a training phase, where a database of RSSI

values and corresponding positions has been compiled. The

position whose RSSI value of the training phase most closely

match the measured fingerprint is then taken as estimate of

the user’s location (e.g. [1], [2]). The latter is often based on

inertial sensors worn or carried by a user [3]. An overview

about wireless sensor network localization techniques can be

found in [4].

Although the access point distribution across the university

campus is rather inhomogeneous, being dense in the vicinity

of lecture halls and sparse in the office areas, the overall

Wireless-LAN network coverage should be sufficient for rough

navigation purposes. However, in some areas additional in-

formation is required, e.g. to correctly distinguish between

adjacent levels or rooms and corridors.

For these badly covered areas the step detection based

upon the inertial smartphone sensors is a valuable information

source. We adopted the ideas described in [5] and [6] to

estimate the number of steps and the heading information (see

VI for more details).

The combination of RSSI and inertial sensor information

with state of the art position estimation approaches mitigates

the detrimental effect of the sparse Wireless-LAN network

coverage and thus enables a reliable navigation and routing

functionality.

Several approaches for estimating the most likely posi-

tion can be found in recent publications, e.g. support vector

machines [1] or k-nearest neighbor (k-NN) [7], [8]. We

used Gaussian distributions to model the signal strengths and

adopted our idea described in [9] on how to exploit the

information of not observing an expected access point at a

given position. A detailed description about the parameter

estimation of censored Gaussian distributions and the clas-

sification accounting for censored data can be found in [10].

The position information gathered by RSSI and the relative

movement estimate provided by the step and heading detection

can be fused by different approaches. For example a Kalman

filter, a particle filter or one of its derivatives can be applied to

get a combined position estimate. Alternatively the positions

can be modeled as the states of a hidden Markov model

(HMM), the RSSI and step detection information is then in-

terpreted as observations of these states and a Viterbi-decoder

can then be used to determine the sequence of positions as

proposed in [11]. Our system uses the HMM approach with

some modifications.

The paper is organized as follows: At first we give in section

II a brief system overview, followed by the description of the

map database in section III and the fingerprint database in

section IV. Subsequently, the routing is described in section

V, the step detection in section VI and the HMM in section

VII. In section VIII some experimental results are discussed.

Finally, we draw some conclusions and present an outlook.

II. SYSTEM OVERVIEW

In contrast to other systems, e.g. [2], we use a client-server

architecture for supporting indoor positioning and navigation

of the smartphone. This approach has several advantages and

some disadvantages. Firstly, the map data can be easily kept

up-to-date for every system user. Secondly, we can use the

RSSI measurements of each user to improve our models and

thus the performance for every user. Thirdly, the computa-

tionally demanding step of position estimation is handled by

a server and not by the smartphone. This enables the usage



of complex algorithms for improved position estimation and

filtering techniques independent of the smartphone hardware

and its individual performance.

A known disadvantage of a client-server architecture is that

routing and navigation requires an ongoing online connection

which reduces the battery power.

In Fig. 1 an overview about the system architecture of

the indoor navigation system is depicted. The smartphone

runs an application called “IndoorNavMap” and the server is

subdivided in a “Map Server” and a “Localization & Routing

Server”.
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Fig. 1. Client-Server architecture for indoor navigation system

A. Client Application

The client software “IndoorNavMap” is developed as a

Java application on an Android smartphone. Its purpose is the

graphically appealing presentation of the current position using

the map tiles from the map server and the user route guidance

if routing is activated. To this end the application periodically

logs the RSSI and communicates with both servers.

In order to make the map displaying user friendly, the map

is always rotated such that the user’s movement direction and

the map orientation are fitted. For this, the on-board compass

of the Android smartphone is utilized.

Fig. 2 shows a snapshot of the smartphone display including

a navigation route (green line with arrows) which guides the

user from one level downstairs to a room. On the left side on

top the icons for zooming in and out are placed as well as the

icon for activating the compass based map rotation. In the left

corner the icons for changing the floors can be found. Thus it

is possible to navigate by hand through the building plans for

searching rooms or to get an overview about a proposed route.

The icons for making the localization and routing request are

placed in the right conner.

B. Server-based Services

The server-based services are responsible for delivering

map tiles, estimating the user position and calculating routes

between two positions. The server consists of the following

two main components:

Fig. 2. Android application showing map and routing information

• Map server: The map tile server utilizes an Apache

webmaster [12] including the custom Apache module

mod tile [13]. It is responsible for serving map tiles,

respectively it triggers the rendering of not yet rendered

map tiles which are not available in the cache. Clients

access this service via a web interface, which automat-

ically handles the client map requests. In order to save

computation time and to reduce the latency in the online

phase the map tile data on the map server is pre-rendered

using Mapnik [14] and some supported software such as

Java OpenStreetMap Editor (JOSM) [15] and osm2pgsql

[16].

• Localization & Routing server: This server is an own

development, which works both in the offline training

phase to gather fingerprints and in the online phase to

handle the localization and routing requests from multiple

parallel clients. A PostgreSQL database is used to store

all the necessary information for localization and routing.

The advantage of using a PostgreSQL database is that the

server directly combines the map information with the

recorded fingerprints.

III. MAP DATABASE

As far as we know, there is neither a current map provider

capable of providing floor plans of buildings for indoor nav-

igation purposes, nor exists a solution for automatically gen-

erating floor plans from construction drawings. Consequently,

all developers of indoor navigation systems have to establish

their own map data bases. In the following we describe our

approach of creating map data fitting into the OSM data.

A. Map data creation and rendering

We analyzed several map editors and renderers towards their

capabilities and requirements for generating map data and

finally selected Mapnik and some companion software, since

this software combination offered the smallest investment in

time and effort. The complete map data rendering tool chain

is illustrated in Fig. 3.

The rendering procedure can be summarized as follows:

First we use the JOSM tool to download the OSM map data
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Fig. 3. Rendering tool chain used for map data preparation

of the university area from the OSM server. This gives us

the map data for modeling the university campus and the

position and size of the buildings in world coordinates, which

becomes important if the indoor localization is extended to

the campus area (outdoor navigation). Subsequently, we use

the building floor plans to extend the downloaded OSM map

file towards a map on room level precision. The output is

again a OSM format map file, but now it contains a detailed

floor plan. In the following we refer to these maps with

the term “extended OSM maps”. Editing maps is the most

time demanding step. Afterward Osm2pgsql and a specified

projection method (Spherical Mercator projection) are used

to import the data from the extended OSM map file into

the PostGIS database. The projection is required to minimize

the impact of assuming the earth being a sphere instead of

an ellipsoid. Finally, Mapnik renders the map tiles with the

defined properties using the PostGIS database.

One problem we had to solve was the combination of

the extended map data of different floor plans. If each floor

were rendered and stored separately this would result in a

database per building level. Additionally, it would increase

the complexity of our routing and navigation algorithms, since

routing requests might require the path search across multiple

databases and the navigation itself requires the handover

between floors and buildings. So we decided to create only

one database for localization and routing purposes for all floors

of all buildings on the campus. To this end we created only

one extended OSM map file containing all floor plans and

subsequently imported this data into the PostgreSQL database.

B. Map data distribution

A lot of publications focus on the aspect of localization pre-

cision and disregard the task of modeling multi-level buildings.

However, since our system is intended for real users, we have

to handle the complex map data of multiple complete buildings

and the whole campus area.

This demanded the creation of a multi-layer map distributor,

since common map distribution systems are usually limited

to one level (e.g. car navigation). We see here one of the

main differences of our system towards other indoor navigation

systems. For this purpose, we render the map tiles of each

floor of each building separately and store them on the server

(offline pre-rendering of map tiles). Note that the original data

for the map tile rendering is the single extended OSM map

described in the previous section.

In the online navigation phase, each map-request contains

information about the longitude and the latitude position of the

user, as well as the level within the building and the selected

zoom level of the smartphone application. Subsequently, the

map server delivers the corresponding map tiles with respect

to the communicated information.

IV. FINGERPRINT DATABASE

Indoor navigation systems usually utilize RSSI from pre-

viously recorded data, namely the fingerprints, to estimate

the position of the smartphone. The main purpose of the

fingerprint database is the storage of fingerprints where a

location dependent database organization is obviously the best

choice to ease the inference step of estimating user positions.

Therefore, we developed an application to establish tables

according to the map data gathered in the map rendering step.

In these tables we stored the RSSI data and the corresponding

MAC addresses, which are also employed as unique identifiers

of the access points. During an initial measurement campaign

we filled up the tables of selected positions with at least a few

measurements.

Note that during the campaign the fingerprints are already

collected by our own Android smartphone application. The

measurements can either be directly stored to the database

by an online communication with the server or intermediately

stored in an XML file on the local storage of the smartphone

and afterwards imported to the database. Using the applica-

tion itself for taking fingerprints reduces the risk of storing

fingerprints to wrong positions, since the user has to pinpoint

his position on the map during the fingerprint capture.

Collecting fingerprints via the online fingerprint collection

mode offers the option to use the already stored fingerprints

from the database to detect mismatches between committed

RSSI data and the hypothesized position.

Please note that the density of fingerprints is considered

carefully, since we are limited to the available infrastructure

of our university and the overall area to be covered is quite

large. The targeted average fingerprint density is defined to

one fingerprint per 3− 5 m.

V. ROUTING

Our routing system is based on the pre-defined nodes

which were inserted in the database during the procedure of

map editing and rendering. The routing path, if existing, is

displayed within the map on the smartphone’s display. It is

built by the nodes which lie on the route from the starting

location to the expected destination. It is possible to show a

route independently of the current user position by adjusting

the starting point.

VI. INERTIAL NAVIGATION USING A STEP DETECTION

The step detection system as depicted in Fig. 4 works

as follows. The accelerometer delivers the 3-dimensional ac-

celeration vector a. We calculate the absolute acceleration

value ‖a‖ and subtract the gravity constant g. To reduce the

influence of sensor errors we apply a 5-Hz lowpass filter as

proposed in [6]. Subsequently, we estimate the amount of steps



by a new decision rule which we found after examining some

experimental trajectories.

In the literature we found two different approaches for

detecting steps using accelerometer data. Firstly, in [6] a peak

detection with a minimum threshold is used to count the steps.

This has the disadvantage that sometimes the maximum is split

in 2 local maxima and thus an additional step is detected. The

second method we found calculates the zero crossing rate of

the accelerometer data (e.g. [5]), which in case of noisy data

may also result in additionally detected steps. For our new

decision rule we combined the strengths of both approaches

by counting the crossing rate of an threshold. Hence, a split

maximum is only counted once and since noisy data do not

exceed the threshold no additional steps are counted.
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Fig. 4. Step detection and position estimation system overview

The heading estimation uses the magnetometer data m and

the gravity information g from the Android operating system

to calculate the rotation matrix R and the magnetometer

yaw angle ψ. The matrix R is required for projecting the

gyroscope data gyr into the world coordinate system and

subsequently estimating the yaw angle velocity dψ. We tried

the approach from [5] for fusing the yaw angle information

of the magnetometer with the gyroscope data, however, the

amount of heuristic parameters made it difficult to find an

optimal, data independent parameter set. Thus we decided to

use a Kalman filter for fusing the two information sources

towards a common yaw angle estimate ψ̂.

In the position estimate block we combine the information

about detected steps with the yaw angle estimates at the

corresponding time instance to predict the position of the user.

For each smartphone user an average step length has to be

estimated in advance.

VII. HIDDEN MARKOV MODEL AND VITERBI DECODER

We combine the step detection and the RSSI information

by a HMM, i.e. the hidden states equal the positions were the

reference fingerprints where recorded and the step detection

and RSSI information are handled as observations emitted by

the hidden states. Further, we assume the initial probabilities

of being in one position is equal for all states. The position

itself is estimated every 1.5 seconds which is the update rate

of the smartphone WiFi scans.

Let the hidden state random variable at time instance t be

given by st and the sequence of RSSIs up to time t be given

by o1:t = [o1, . . .ot] and the step detection information be

given by v1:t = [v1, . . .vt]. In order to obtain a combined step

detection information of the last time period (1.5 s) the steps

are accumulated with respect to the corresponding direction

information to a 2-dimensional movement vector.

The position estimate can now be performed by finding

the most likely state given the sequence of observations. The

probability of being in the j-th state is given by

p(st=j|v1:t,o1:t) =
p(st=j,v1:t,o1:t)

p(v1:t,o1:t)

∼ p(st=j,v1:t,o1:t) := αt(j), (1)

where we neglected the denominator term which has no effect

on the maximum search. Using Bayes rule it follows

αt(j) =
∑

i

p(st=j, st−1=i,v1:t,o1:t)

=
∑

i

p(vt|st=j, st−1=i,v1:t−1,o1:t−1,ot)

· p(ot|st=j, st−1=i,v1:t−1,o1:t−1)

· p(st=j|st−1=i,v1:t−1,o1:t−1)

· p(st−1=i,v1:t−1,o1:t−1) (2)

Applying the properties of the HMM and assuming the step

detection and RSSI information of time instance t to be statis-

tically independent from each other and independent from the

information of other time instance enables the simplification

of eq. (2) to

αt(j) =
∑

i

p(vt|st=j, st−1=i) · p(ot|st=j)

·p(st=j|st−1=i) · p(st−1=i,v1:t−1,o1:t−1)︸ ︷︷ ︸
=αt−1(i)

(3)

The terms in eq. (3) can be interpreted as follows. The

transition probabilities p(st=j|st−1=i) are given by the pos-

sible paths between two positions, i.e. the transition matrix at

entry (i, j) has only a value larger than zero if a path between

the positions represented by the i-th and j-th state exist. The

RSSI information is modeled by the term p(ot|st=j), which
is considered as the likelihood of the RSSI measurement at

time instance t for a given position represented by state st.

The distribution p(ot|st=j) is modeled as a Gaussian with

p(ot|st=j) = N (ot;µj,k, σ
2
j,k)

In order to calculate the RSSI likelihood, we need the mean

µj,k and variance σ2
j,k of the RSSI distribution of the k-th

access point at location st = j. Note, that in real scenarios for

some locations and at some time instances the RSSIs of some

APs may fall bellow a minimum threshold of the sensitivity

of the WiFi sensor. This results in censored data which has

to be accounted for in both parameters of RSSI distribution

estimation and online classification (see [10] for details).

Accounting for censored data increases the performance of

the algorithm significantly.

The movement information gathered from the step detection

is regarded with the term p(vt|st=j, st−1=i). This probability
density function is assumed to follow a Gaussian distribution

with a mean vector µi,j = lj − li and a diagonal covariance

matrix Σv , where lj is the 2-dimensional location vector



belonging to the j-th state.

p(vt|st=j, st−1=i) =
e(−

1

2
(vt−µi,j)

TΣ−1

v (vt−µi,j))
√
(2π)2|Σv|

(4)

The precision of the approach can be further enhanced by

fusing the set of the most likely positions P instead of using

only the most probable one. The final location estimate l̂ is

then obtained by the weighted average:

l̂ =
1∑

k∈P

p(st = k|v1:t,o1:t)

∑

k∈P

p(st = k|v1:t,o1:t)lk. (5)

VIII. EXPERIMENTAL RESULTS

In Figure 5 an example trajectory from a staircase of one

of the university buildings is depicted. In dark green the

rectangular path of the smartphone user is shown. The red

circles indicate the detected steps and the blue line shows the

estimated path of the user. Two different errors are visible

in the trajectory. Firstly, additional steps are detected after

the first turn which causes an elongated path. Secondly, the

electrical machines of the three elevators (right side of the

figure) obviously affects the magnetic field sensors of the

smartphone which results in an orientation error. However,

the deviation of the localization remains in a tolerable scope.

Furthermore, a map matching approach using information

about walls, doors and possible paths would enable a further

error reduction.

Fig. 5. Trajectory example of the step detection system projected into the
map data of construction plans

We have tested our new parametric approach in one floor

of one building in the University of Paderborn where our

department is located. The results are shown in Fig. 6 in

terms of the cumulative distribution function (CDF) of the

position error. The CDF is defined as the probability that the

positioning error ǫ is lower than a certain distance d:

CDFǫ(d) = P (ǫ ≤ d) d ≥ 0. (6)
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Fig. 6. CDF of the positioning error for different systems.

In our experiments the step detection alone (“HMM Step”)

performed better than the RSSI information processed by the

HMM (“HMM RSSI”). However, if only the step detection

information is used additional information about the starting

position is required. The combination of both resulted in

the green line (“HMM RSSI+Step”). This approach mostly

outperformed our proposal from [10] (“RSSI [10]”).

IX. CONCLUSIONS

In this paper we have presented an indoor navigation system

for the University of Paderborn as developed by our depart-

ment. It is a flexible client-server architecture which offers

navigation services even to low-cost smartphones. We ex-

plained how the database generation, using the OpenStreetMap

data as a starting point, can be conducted.

Additionally our step detection system for dead reckoning

was briefly described. It enables the smartphone application

to continue the route guidance even if no network access is

available.

We are currently extending our system towards online learn-

ing capabilities by utilizing the results of the step detection

system and the moving direction estimation in combination

with the RSSI information. It will enable our system to

fill up the fingerprint database itself from user committed

RSSI positioning requests, and consequently, improve the

positioning accuracy.
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