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ABSTRACT

In this paper, we consider the Maximum Likelihood (ML) estimation
of the parameters of a GAUSSIAN in the presence of censored, i.e.,
clipped data. We show that the resulting Expectation Maximization
(EM) algorithm delivers virtually biasfree and efficient estimates,
and we discuss its convergence properties. We also discuss optimal
classification in the presence of censored data. Censored data are fre-
quently encountered in wireless LAN positioning systems based on
the fingerprinting method employing signal strength measurements,
due to the limited sensitivity of the portable devices. Experiments
both on simulated and real-world data demonstrate the effectiveness
of the proposed algorithms.

Index Terms— Indoor positioning, wireless LAN, signal
strength, expectation maximization, censored data

1. INTRODUCTION

Achieving accurate positioning inside buildings is still amajor tech-
nical challenge, due to the unavailability of GPS. Since thesystem
should not come at the cost of an extra infrastructure solelyfor posi-
tioning purposes, solutions relying on already present devices, such
as WiFi access points, are of particular interest. Smartphones and
laptops are commonly equipped with WiFi sensors, such that the
realization of an indoor localization functionality becomes only a
matter of software.

However, IEEE 802.11 based positioning is a challenging task.
Multipath propagation and missing line-of-sight renders time- or
direction-of-arrival based algorithms unsuitable. As a result indoor
positioning based on WiFi signal strength fingerprints havebeen
proposed [1], where in an offline phase the statistics of the received
signal strength index (RSSI) of access points (APs) measured at the
target positions is gathered and the measurements during the online
phase are compared to these statistics to come up with a decision
on the user’s location. Thek-nearest neighbor (k-NN) rule with a
Euclidian distance measure is used in the early RADAR system[1].
LOCATOR [2] clusters the locations of thek nearest neighbors and
outputs the location of the most likely cluster center. The system in
[3] employsk-NN with the Bhattacharyya coefficient between of-
fline and online measurements, averaged over the strongest received
APs, as a distance measure.

However, the sensitivity of RSSI sensors of typical smartphones
is limited to a range from−30 dBm to−100 dBm, resulting in loss
or clipping of RSSI measurements, if access points are particularly
strong or weak.

If this clipping is not accounted for in the training and classifi-
cation, this results in loss of location accuracy. To improve perfor-
mance, the problem of parameter estimation and classification in the

presence of so-called censored, i.e., clipped data has to beconsid-
ered. Recently, an Expectation Maximization (EM) algorithm has
been derived for estimating the parameters of multivariateGAUS-
SIAN mixture models in the presence of censored measurements [4],
other publications have also addressed this problems usingmaxi-
mum likelihood estimation (MLE) and analysed the CRAMER-RAO

bound of the mean estimate of the GAUSSIAN [5, 6]. Utilizing the
information of censored data to calculate the full likelihood has been
discussed in [7] using sequential BAYESIAN estimation. We build
upon the result from [4] and show that in the case of a single GAUS-
SIAN model, the estimation algorithm is biasfree and, moreover,
achieves the CRB for both mean and variance estimates. We fur-
ther derive how the convergence speed depends on the parameters of
the GAUSSIAN and the clipping threshold. While this algorithm is
used in the offline training phase, we also show how the onlineclas-
sification/localization stage has to be modified to account for clipped
measurements.

The paper is organized as follows: in Section 2 we outline the
derivation of the EM algorithm for univariate censored normally dis-
tributed measurements. Being somewhat different from the deriva-
tion in [4] it serves to introduce our notation. The properties of the
algorithm are investigated in Section 3. Section 4 presentsthe clas-
sification algorithm, while Section 5 describes positioning experi-
ments both on artificially generated data and on real measurements
gathered inside an office building. The paper finished with conclu-
sions drawn in Section 6.

2. PARAMETER ESTIMATION ALGORITHM

In the following derivation we consider GAUSSIAN measurements
which are one-sided censored only, to simplify the exposition. An
extension to the two-sided case is straightforward.

Let y = y1, ..., yN ; yi ∈ R be the unobservable, non-censored
data, whereN is the number of measurements and where theyi are
i.i.d. with GAUSSIAN probability density function (PDF)pY (yi) =
N (yi;µ, σ

2). Observable are the datax = x1, ..., xN , wherexi =
max(yi, c), with clipping thresholdc. Our goal is to estimate the
parametersθ = (µ, σ2) of the underlying GAUSSIAN.

Employing the EM algorithm we identifyy andx to be the com-
plete and the observed data. Thus the expected log-likelihood of the
complete data is given by

Q(θ; θ(κ)) = E
[

ln (pY (y; θ)) |x; θ
(κ)

]

(1)

=

N
∑

i=1

∫ ∞

−∞

ln (pY (yi; θ)) p
(

yi|xi; θ
(κ)

)

dyi (2)

=:

N
∑

i=1

fi
(

θ; θ(κ)
)

, (3)



whereκ is the iteration index. A moment of thought shows

p(yi|xi; θ
(κ)) =

{

N(yi;θ(κ))
I0(θ

(κ))
, if yi ≤ c

δ (yi − xi) , if yi > c
. (4)

Here we have used the notation

Ij(θ
(κ)) =

∫ c

−∞

yjN
(

y; θ(κ)
)

dy (5)

with j = 0.
Introducing the binary random variableZi with realizationzi,

wherezi = 0 and zi = 1 indicate that thei-th measurement is
not censored or censored, respectively, the summand in (3) can be
written as

fi
(

θ; θ(κ)
)

=
zi

I0 (θ(κ))

∫ c

−∞

ln (N (yi; θ))N
(

yi; θ
(κ)

)

dyi

+ (1− zi) ln (N (yi; θ)) . (6)

The parameter estimates are obtained by computing the deriva-
tives of (6) w.r.t. the elements ofθ:

∂

∂µ
fi

(

θ; θ(κ)
)

=
zi
σ2

(

I1(θ
(κ))

I0(θ(κ))
− µ

)

+
(1− zi)

σ2
(xi − µ) (7)

∂

∂σ
fi

(

θ; θ(κ)
)

=
zi
σ

[

1

σ2

(

I2(θ
(κ))

I0(θ(κ))
− 2µ

I1(θ
(κ))

I0(θ(κ))
+ µ2

)

− 1

]

+
1− zi
σ

(

(xi − µ)2

σ2
− 1

)

, (8)

where we exploited the fact thatyi = xi in casezi = 0. Setting
the summation of the derivatives to zero, the estimates are readily
obtained:

µ(κ+1) =
1

N

I1(θ
(κ))

I0(θ(κ))

N
∑

i=1

zi +
1

N

N
∑

i=1

(1− zi)xi (9)

(

σ2
)(κ+1)

=

[

I2(θ
(κ))

I0(θ(κ))
− 2µ(κ) I1(θ

(κ))

I0(θ(κ))
+

(

µ2
)(κ)

]

1

N

N
∑

i=1

zi

+
1

N

N
∑

i=1

(1− zi)
(

xi − µ(κ)
)2

. (10)

After convergence we haveµ(κ+1) ≈ µ(κ) =: µ̂ and
(

σ2
)(κ+1)

≈
(

σ2
)(κ)

=: σ̂2. Using this in (9) and (10) and solving for the esti-
mates, we arrive at

µ̂ =
M

N

1

M

M
∑

i=1

xi +

[

1−
M

N

]

∫ c

−∞
ypY (y; θ̂)dy

∫ c

−∞
pY (y; θ̂)dy

, (11)

σ̂2 =
M

N

1

M

M
∑

i=1

(xi − µ̂)2

+

[

1−
M

N

]

∫ c

−∞
(y − µ̂)2pY (y; θ̂)dy
∫ c

−∞
pY (y; θ̂)dy

, (12)

where we assumed w.l.o.g. that the firstM =
∑

i(1 − zi) obser-
vations are the uncensored ones. These expressions lend themselves
to the following interpretation: Mean and variance estimates are the
weighted average between their ML estimates computed from the
observed data and the mean and variance of the assumed truncated
GAUSSIAN of the unobservable parts. The weights are the relative
frequencies of the uncensored and censored measurements, respec-
tively.

3. PROPERTIES OF ESTIMATES

3.1. Unbiasedness and Convergence Properties

In order to study the convergence properties we compute the ex-
pected values of the difference between the estimates, eqs.(9) and
(10), and the true values of the parameters. First note thatZi is a
BERNOULLI random variable with

P (Zi = 1) =

∫ c

−∞

pY (y; θ)dy = I0(θ)

andP (Zi = 0) = 1 − I0(θ). Thus: E[Zi] = E[Z2
i ] = I0(θ).

Taking the expectation of (9) we have

E
[

µ(κ+1)
]

=
1

N

N
∑

i=1

E[(1− zi)xi] +
1

N

N
∑

i=1

E

[

I1(θ
(κ))

I0(θ(κ))
zi

]

.

(13)
The first expectation can be evaluated as follows:

E[(1− Zi)Xi] =
1

∑

zi=0

∫ ∞

−∞

(1− zi)xiP (zi|xi)pY (xi)dxi

=

∫ ∞

c

xiN (xi; θ)dxi = µ− I1(θ). (14)

Here we have used that

P (zi = 0|xi) =

{

1, if xi > c
0, else

.

Using furtherE
[

I1(θ
(κ))

I0(θ
(κ))

zi
]

≈ E
[

I1(θ
(κ))

I0(θ
(κ))

]

E[Zi] and subtracting

µ from either side of eq. (13) we obtain

E
[

µ̃(κ+1)
]

= −I1(θ) + I0(θ)E

[

I1(θ
(κ))

I0(θ(κ))

]

. (15)

whereµ̃(κ+1) = µ(κ+1) − µ. A similar equation can be found for
(

σ̃2
)(κ+1)

=
(

σ2
)(κ+1)

− σ2.
In order to compute the remaining expectation, a Taylor series

expansion around the true parameter valuesθ = (µ, σ2) is applied
and truncated after the linear term:

E

[

I1(θ
(κ))

I0(θ(κ))

]

≈
I1(θ)

I0(θ)
+ E

[

µ̃(κ)
] ∂

∂µ

I1(θ)

I0(θ)

+ E
[

(

σ̃2)(κ)
] ∂

∂σ2

I1(θ)

I0(θ)
. (16)

Using this in (15) we arrive after a straightforward, however lengthy
computation at





E
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]

E
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σ̃2
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]
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Wµ Wµσ

Wσµ Wσ

)





E
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µ̃(κ)
]

E
[

(

σ̃2
)(κ)

]





=

(

Wµ Wµσ

Wσµ Wσ

)κ+1




E
[

µ̃(0)
]

E
[

(

σ̃2
)(0)

]



 ,

(17)

where

Wµ = I0(θ)
∂

∂µ

I1(µ)

I0(µ)
, Wµσ = I0(θ)

∂

∂σ2

I1(θ)

I0(θ)
,

Wσ = I0(θ)
∂

∂σ2

I2(θ)− 2I1(θ)µ+ I0(θ)µ
2

I0(θ)
,

Wσµ = I0(θ)
∂

∂µ

I2(θ)− 2I1(θ)µ+ I0(θ)µ
2

I0(θ)
.



Noting that the magnitudes of the eigenvalues of the matrix with
theW entries are always less than one (approaching one forc →
∞), we can conclude that the estimates are biasfree. Since, however,
in practiceµ has to be replaced by its estimate in the estimation of
the variance, we exhibit the same bias as in ordinary ML estimation
of the variance. In the applications considered here, the bias of the
ML estimate of the variance can be neglected due to the large number
of samples. Further, an estimate of the convergence speed ofthe EM
algorithms can also be obtained from eq. (17), see Fig. 1. It can be
seen that the number of iterations quickly rises once more than 50%
of the data are clipped.
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Fig. 1. Theoretical number of EM iterationsκ required to reduce
the estimation error to10−4 of its initial value as a function of(c−

µ)/σ. Initial valuesµ(0),
(

σ2
)(0)

have been set to the ML estimates
of µ, σ2 computed from the unclipped observations only.

3.2. Precision

From the derivation of the EM algorithm it can be seen that themea-
surements consist of actually two types of data, the numberM of
noncensored observations and the observations themselves. While
the first is binomially distributed, the second are drawn from a trun-
cated GAUSSIAN. Further note that the draws from the GAUSSIAN

are independent of the binomial random variable. Following[8] the
log-likelihood is thus given by

L(θ) = ln

(

N !

M !(N −M)!

)

+ (N −M) ln (I0(θ))

−
M

2
ln

(

2πσ2
)

−
1

2

M
∑

j=1

(

xj − µ

σ

)2

. (18)

From this the Fisher information matrixI can be readily computed.
The CRAMER-RAO bound on the estimation error variance of the
mean and variance estimates are then obtained by invertingI.

4. CLASSIFICATION OF CENSORED DATA

Indoor localization can be formulated as a classification problem,
where the classes are the positions from which RSSI measurements
are taken during the offline training phase. For each position ℓk the
parameters of a GAUSSIAN class-conditional densitypY (y|ℓk) of
RSSI measurements are estimated using the EM algorithm of the last
sections. During online classification, to estimate the user’s location,
first the posterior is calculated as follows

p(ℓk|x1:S) =

∏S

s=1

∏NAP

i=1 p(xs,i|ℓk)P (ℓk)
∑K

k′=1

∏S

s=1

∏NAP

i=1 p(xs,i|ℓk′)P (ℓk′)
(19)

whereK is the number of offline training locations,S is the num-
ber of online measurements,xs,i is the RSSI ofi-th AP in thes-th
measurement andNAP is the total number of access points from
which measurements are taken. Here we assumed independenceof

the measurementsx1:S and the RSSIs of different APs. Further, the
prior P (ℓk) is assumed to be equal for all locations. Note that the
test data are also subject to censoring. The likelihoodp(xs,i|ℓk) can
be calculated as follows

p(xs,i|ℓk) =

∫ ∞

−∞

p(xs,i|yi)pY (yi|ℓk)dyi, (20)

where
p(xs,i|yi) =

{

δ(xs,i − yi), if yi > c
δ(xs,i − c), if yi ≤ c

. (21)

Plugging this into eq. (20) we arrive at

p(xs,i|ℓk) =

{

N (xs,i; µ̂ℓk,i, σ̂
2
ℓk,i

), if xs,i > c
I0(µ̂ℓk,i, σ̂

2
ℓk,i

), if xs,i = c
. (22)

Here,(µ̂ℓk,i, σ̂
2
ℓk,i

) are the estimated parameters of thei-th AP at
location ℓk. In case all observations of thei-th AP at locationℓk
are clipped, the mean estimate is set to a small valueµ̂ℓk,i ≪ c and
σ̂2
ℓk,i

is set to an average value.
The setP of nearest neighbors is chosen among the offline lo-

cations by taking those with the largest posteriors. The final location
estimatêℓ is then obtained by the weighted average

ℓ̂(x1:S) =
1

∑

k∈P p(ℓk|x1:S)

∑

k∈P

ℓkp(ℓk|x1:S). (23)

5. EXPERIMENTAL RESULTS

5.1. Performance of EM Algorithm

Fig. 2 compares the CRAMER-RAO bound with the mean squared
error (MSE) of the proposed estimators for meanµ and variance
σ2 obtained from a simulation. It can be seen that the estimator
practically achieves the bound, with differences so small that they
are no visible in the graph. We therefore conclude that the estima-
tor is efficient. Further, for the limiting case of completely uncen-
sored data the well-known results for ML parameter estimation from
a normal population are obtained:MSE(µ) = σ2/N ; MSE(σ2) =
σ4(2N − 1)/N2.
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Fig. 2. Comparison of CRAMER-RAO bound for mean and variance
with MSE obtained from simulation forσ2 = 25 andN = 1000.

5.2. Classification on Artificial Data

In the following we evaluate the effectiveness of the EM algorithm
for an indoor localization problem, first using artificiallygenerated
data: We consider a 2-class problem withNAP = 5 access points.
For each of the two locationsN = 1000 training samples are drawn
from a normal density with parameters according to Table 1 and then
censored from the left with a threshold ofc = −100 (dBm). A



Table 1. Mean and standard deviation of APs at 2 positions

AP index AP1 AP2 AP3 AP4 AP5

µ1,i -102 -103 -97 -89 -95
µ2,i -105 -100 -99 -86 -101
σ1,i 4.8 4.9 5.0 5.2 5.1
σ2,i 5.0 4.8 4.8 5.4 5.0

Table 2. Classification error rate on artificial data
Method Error rate (%)

Plain trng + recog 30.7
EM trng + plain recog 26.9

EM trng + censored recog 22.5
3-strongest APs 35.1

1-nearest neighbor 36.8

total of200 test samples,100 per location, are generated in the same
manner.

We compared the classification error rate of the following
schemes using one online measurement:

• Plain training (trng) + recognition (recog): ML parameter es-
timation is carried out assuming normally distributed, uncen-
sored data. Also recognition is performed disregarding any
censoring.

• EM trng + plain recog: ML parameter estimation in training
accounts for the censored data using the proposed EM algo-
rithm, while the presence of censored data is still disregarded
in recognition.

• EM trng + censored recog: Training with the proposed EM
algorithm and recognition employing eq. (22).

• 3-strongest APs: Select three strongest APs of each location
in the training phase, then apply EM trng + censored recog.

• 1-nearest neighbor classification rule.

Table 2 clearly shows the superiority of the schemes which are
aware of the censoring. Considering the presence of censored data
in training improved the error rate from30.7% to 26.9%, and a fur-
ther improvement to22.5% is obtained by accounting for censored
data also in recognition. We can also see the important role of weak
APs for the recognition accuracy: using only the three strongest APs
raises the error rate to35.1%.

5.3. Classification on Field Data

We conducted measurements on a floor of an office building consist-
ing of 10 office rooms and a long aisle having an overall size of12m
by 30m (see Fig. 3). RSSI values were taken at25 different posi-
tions, roughly evenly distributed, resulting in an averagedistance of
2.7m between two locations. Two measurement campaigns were
carried out using a smartphone, with 100 measurements takenper
position per campaign. The data of the first were taken as training
and the second for testing purposes. For the training data set, the
percentage of unclipped observations, averaged over all APs which
were observable at each location, was found to be36.7%.

To compare our approach to a state-of-the-art system we imple-
mented the algorithm from [3]. There, for each locationℓk the prob-
ability distributions of the10 strongest APs are determined during
the training phase and compared to those of the online measurements
employing the Bhattacharyya coefficient. A3-nearest neighbor rule

Fig. 3. Floor plan of area where field data has been conducted.

is then applied to decide on the user location. Further, we compared
with the RADAR system [1], where classification is performedwith
a 3-nearest neighbor rule, employing the Euclidian distance.When
applying our proposed algorithm, we used5 online measurements
and3-nearest neighbors. Note that5 online measurements were also
employed in our implementation of the algorithm of [3].

Fig. 4 shows the cumulative distribution function (CDF) of the
error as a function of the distance for each method. It is defined
as the probability that the positioning errorǫ is lower than a certain
distanced:

CDFǫ(d) = P (ǫ ≤ d) d ≥ 0. (24)

The results in Fig. 4 show that the proposed method outperforms
the other, especially for the40% error quantile. Note, also, that the
computational cost of the proposed method during the onlinephase
is smaller than those of computing the Bhattacharyya distances be-
tween probability distributions [3] or the nearest-neighbor based [1]
methods.
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Fig. 4. CDF of the positioning error for different systems.

6. CONCLUSIONS AND RELATION TO PRIOR WORK

In this paper, an EM algorithm for estimating the parametersof a
GAUSSIAN PDF in the presence of censored data was presented and
analysed. Its convergence properties were studied and it was shown
that the algorithm delivers unbiased and efficient estimates, achiev-
ing the CRAMER-RAO bound, which are novel results not addressed
in prior work, such as [4] or [8]. Further, we have shown how clas-
sification has to be modified to account for censored data. Thealgo-
rithm was then applied to WiFi-based indoor positioning. Asfar as
we know, this is the first time a proper statistical treatmentof RSSI
values below the sensitivity threshold of the device has been carried
out both in the offline training phase and the online classification
stage.

The performance of the algorithms was first validated on artifi-
cially generated data and then on real field data of an experimental
indoor positioning system. Improved positioning accuracyat low
computational cost were observed, compared to other proposed al-
gorithms.
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