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ABSTRACT

In this paper, we consider the Maximum Likelihood (ML) estiton
of the parameters of a &wssIAN in the presence of censored, i.e.,
clipped data. We show that the resulting Expectation Mazéatidn
(EM) algorithm delivers virtually biasfree and efficienttiesates,
and we discuss its convergence properties. We also disptissab
classification in the presence of censored data. Censoraedmsfre-
quently encountered in wireless LAN positioning systenmseblzon
the fingerprinting method employing signal strength mezsents,
due to the limited sensitivity of the portable devices. HEkpents
both on simulated and real-world data demonstrate theteféaess
of the proposed algorithms.

Index Terms— Indoor positioning, wireless LAN, signal
strength, expectation maximization, censored data

1. INTRODUCTION

Achieving accurate positioning inside buildings is stithajor tech-
nical challenge, due to the unavailability of GPS. Sincedystem
should not come at the cost of an extra infrastructure sébelgosi-
tioning purposes, solutions relying on already presenicdsy such
as WIiFi access points, are of particular interest. Smanps@nd
laptops are commonly equipped with WiFi sensors, such that t
realization of an indoor localization functionality becesnonly a
matter of software.

However, IEEE 802.11 based positioning is a challenging. tas
Multipath propagation and missing line-of-sight renderset or
direction-of-arrival based algorithms unsuitable. As sufeindoor
positioning based on WiFi signal strength fingerprints hbeen
proposed [1], where in an offline phase the statistics of ¢eeived
signal strength index (RSSI) of access points (APs) medstrthe
target positions is gathered and the measurements duengntine
phase are compared to these statistics to come up with aafecis
on the user’s location. The-nearest neighbork(NN) rule with a
Euclidian distance measure is used in the early RADAR sy§t¢ém
LOCATOR [2] clusters the locations of thenearest neighbors and
outputs the location of the most likely cluster center. Ty&team in
[3] employsk-NN with the Bhattacharyya coefficient between of-
fline and online measurements, averaged over the stroreyested
APs, as a distance measure.

However, the sensitivity of RSSI sensors of typical smaotas
is limited to a range from-30 dBm to —100 dBm, resulting in loss
or clipping of RSSI measurements, if access points arecpiatly
strong or weak.

If this clipping is not accounted for in the training and diis
cation, this results in loss of location accuracy. To imgrgerfor-
mance, the problem of parameter estimation and classdicatithe

presence of so-called censored, i.e., clipped data has torisd-
ered. Recently, an Expectation Maximization (EM) algarithas
been derived for estimating the parameters of multivar@e s-
SIAN mixture models in the presence of censored measurements [4]
other publications have also addressed this problems usaeg-
mum likelihood estimation (MLE) and analysed the &MER-RAO
bound of the mean estimate of then@ssIAN [5, 6]. Utilizing the
information of censored data to calculate the full likebikddhas been
discussed in [7] using sequentiahBeESIAN estimation. We build
upon the result from [4] and show that in the case of a single

SIAN model, the estimation algorithm is biasfree and, moreover,
achieves the CRB for both mean and variance estimates. We fur
ther derive how the convergence speed depends on the pararogt
the GaussiaN and the clipping threshold. While this algorithm is
used in the offline training phase, we also show how the owliag
sification/localization stage has to be modified to acconntlipped
measurements.

The paper is organized as follows: in Section 2 we outline the
derivation of the EM algorithm for univariate censored naliyndis-
tributed measurements. Being somewhat different from grevat
tion in [4] it serves to introduce our notation. The propestof the
algorithm are investigated in Section 3. Section 4 presietelas-
sification algorithm, while Section 5 describes positignexperi-
ments both on artificially generated data and on real meammns
gathered inside an office building. The paper finished withcas
sions drawn in Section 6.

2. PARAMETER ESTIMATION ALGORITHM

In the following derivation we consider &&SSIAN measurements
which are one-sided censored only, to simplify the expasitiAn
extension to the two-sided case is straightforward.

Lety = y1,...,yn~; vy € R be the unobservable, non-censored
data, whereV is the number of measurements and whereythare
i.i.d. with GAussIAN probability density function (PDR)y (y:)
N (yi; 1, 0*). Observable are the data= z1, ..., x5, Wherez;
max(yi, ¢), with clipping thresholde. Our goal is to estimate the
parameters = (u, o*) of the underlying QUSSIAN.

Employing the EM algorithm we identify andx to be the com-
plete and the observed data. Thus the expected log-liladilob the
complete data is given by

Q(0:0")) = B [In (pv (v:0)) x: 0|

@
N oo

=3 [ wrwso)p (weao”) i @
i=1Y 7>

> (k)
::;fi(e;e )

®)



wherek is the iteration index. A moment of thought shows 3. PROPERTIES OF ESTIMATES
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Introducing the binary random variablg with realizationz;, . 5
wherez; — 0 andz = 1 indicate that the-th measurement is aNdP(Zi = 0) = 1 — Io(0). Thus: E[Z] = E[Z7] = Io(0).
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Noting that the magnitudes of the eigenvalues of the matitix w
the W entries are always less than one (approaching one fer
o0), we can conclude that the estimates are biasfree. Sinaeveo,

the measuremenss;.s and the RSSIs of different APs. Further, the
prior P(¢;) is assumed to be equal for all locations. Note that the
test data are also subject to censoring. The likeliho@d ;|¢x) can

in practicep has to be replaced by its estimate in the estimation obe calculated as follows

the variance, we exhibit the same bias as in ordinary ML egton
of the variance. In the applications considered here, the bi the
ML estimate of the variance can be neglected due to the langbar
of samples. Further, an estimate of the convergence spdbd BM
algorithms can also be obtained from eq. (17), see Fig. lanthe
seen that the number of iterations quickly rises once mare 59%

of the data are clipped.
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Fig. 1. Theoretical number of EM iterations required to reduce
the estimation error td0~* of its initial value as a function ofc —

1) /o Initial valuesu(®, (o) ® have been set to the ML estimates
of u, 2 computed from the unclipped observations only.

3.2. Precision

From the derivation of the EM algorithm it can be seen thantlea-
surements consist of actually two types of data, the nunibenf
noncensored observations and the observations themséivieie
the first is binomially distributed, the second are drawmfrtrun-
cated QUSSIAN. Further note that the draws from theaGssIAN
are independent of the binomial random variable. FolloW8jghe
log-likelihood is thus given by
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From this the Fisher information matrixcan be readily computed.

j=1
The ORAMER-RAO bound on the estimation error variance of the
mean and variance estimates are then obtained by invdrting

T —

M
-5 In (271'02) -

(18)

4. CLASSIFICATION OF CENSORED DATA

Indoor localization can be formulated as a classificatiarbfam,
where the classes are the positions from which RSSI measatem
are taken during the offline training phase. For each posttiahe
parameters of a @JSSIAN class-conditional densityy (y|¢x) of
RSSI measurements are estimated using the EM algorithne ¢di$h
sections. During online classification, to estimate the’siggcation,
first the posterior is calculated as follows

T15_, TTA" p(@s,ill) P(£k)
S T TIAT p(s il ) P(6ir)
where K is the number of offline training locations, is the num-

ber of online measurements; ; is the RSSI ofi-th AP in thes-th
measurement and/ 4 p is the total number of access points from

p(lklx1:5) = (19)
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Plugging this into eq. (20) we arrive at
oy N(@sis 6,67, ), fass>c
Plonillh) = { Io(uynd2. ), Hfaei=c - @2

Here, (ﬂzkm&?k,i) are the estimated parameters of thth AP at
location /. In case all observations of thieth AP at location/y,
are clipped, the mean estimate is set to a small valye < c and
&?kvi is set to an average value.

The setP of nearest neighbors is chosen among the offline lo-
cations by taking those with the largest posteriors. Thé fatation
estimate/ is then obtained by the weighted average
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5. EXPERIMENTAL RESULTS

5.1. Performance of EM Algorithm

Fig. 2 compares the RAMER-RAO bound with the mean squared
error (MSE) of the proposed estimators for mgamnd variance

o obtained from a simulation. It can be seen that the estimator
practically achieves the bound, with differences so sniet they

are no visible in the graph. We therefore conclude that ttienas

tor is efficient. Further, for the limiting case of completeincen-
sored data the well-known results for ML parameter estiomeftiom

a normal population are obtaineMISE(u) = o?/N; MSE(0?) =
o*(2N —1)/N>.
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Fig. 2. Comparison of @AMER-RAO bound for mean and variance
with MSE obtained from simulation far? = 25 and N = 1000.

5.2. Classification on Atrtificial Data

In the following we evaluate the effectiveness of the EM &lthon
for an indoor localization problem, first using artificialjgnerated
data: We consider a 2-class problem with » = 5 access points.
For each of the two location¥ = 1000 training samples are drawn
from a normal density with parameters according to Tabledlthen

which measurements are taken. Here we assumed indeperafencecensored from the left with a threshold ef= —100 (dBm). A



Table 1. Mean and standard deviation of APs at 2 positions

APindex | AP1 | AP2 | AP3 | AP4 | AP5
L1 2102 | -103 | 97 | -89 | -95
12, -105 | -100 | -99 | -86 | -101
01,4 4.8 4.9 50 5.2 5.1
g2.4 50 4.8 4.8 54 50

0,

Table 2. Classification error rate on artificial data

Method Error rate (%) |
Plain trng + recog 30.7
EM trng + plain recog 26.9
EM trng + censored recog 225
3-strongest APs 35.1
1-nearest neighbor 36.8

total of 200 test samples, 00 per location, are generated in the same
manner.

We compared the classification error rate of the following
schemes using one online measurement:

e Plain training (trng) + recognition (recog): ML parameter e
timation is carried out assuming normally distributed,emc

Fig. 3. Floor plan of area where field data has been conducted.

is then applied to decide on the user location. Further, wepaoed
with the RADAR system [1], where classification is perfornveith

a 3-nearest neighbor rule, employing the Euclidian distayen
applying our proposed algorithm, we usgdnline measurements
and3-nearest neighbors. Note thHabnline measurements were also
employed in our implementation of the algorithm of [3].

Fig. 4 shows the cumulative distribution function (CDF) bét
error as a function of the distance for each method. It is ddfin
as the probability that the positioning errois lower than a certain
distanced:

CDF.(d) = P(e < d)

d>0. (24)

The results in Fig. 4 show that the proposed method outpasfor
the other, especially for thé0% error quantile. Note, also, that the

sored data. Also recognition is performed disregarding amyfomputational cost of the proposed method during the omlivese

censoring.
e EM trng + plain recog: ML parameter estimation in training

is smaller than those of computing the Bhattacharyya distabe-
tween probability distributions [3] or the nearest-neighbased [1]
methods.

accounts for the censored data using the proposed EM algo-

rithm, while the presence of censored data is still distegghr
in recognition.

e EM trng + censored recog: Training with the proposed EM

algorithm and recognition employing eq. (22).

e 3-strongest APs: Select three strongest APs of each locatio g 0.4+ 4

in the training phase, then apply EM trng + censored recog.
e 1-nearest neighbor classification rule.

Table 2 clearly shows the superiority of the schemes whieh ar
aware of the censoring. Considering the presence of cahsata
in training improved the error rate froB9.7% to 26.9%, and a fur-
ther improvement t@2.5% is obtained by accounting for censored
data also in recognition. We can also see the important foleak
APs for the recognition accuracy: using only the three gfeshAPs
raises the error rate &5.1%.

5.3. Classification on Field Data

We conducted measurements on a floor of an office buildingsens
ing of 10 office rooms and a long aisle having an overall size2af.
by 30 m (see Fig. 3). RSSI values were takeratdifferent posi-
tions, roughly evenly distributed, resulting in an averdggtance of
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Fig. 4. CDF of the positioning error for different systems.

6. CONCLUSIONS AND RELATION TO PRIOR WORK

In this paper, an EM algorithm for estimating the parametéra
GAussIAN PDF in the presence of censored data was presented and
analysed. Its convergence properties were studied andsistawvn

that the algorithm delivers unbiased and efficient estimatehiev-

ing the GRAMER-RAO bound, which are novel results not addressed
in prior work, such as [4] or [8]. Further, we have shown hoasel

2.7m between two locations. Two measurement campaigns wersification has to be modified to account for censored dataalgee

carried out using a smartphone, with 100 measurements {aden
position per campaign. The data of the first were taken asitigi
and the second for testing purposes. For the training datahse
percentage of unclipped observations, averaged over allvifch
were observable at each location, was found t8&%.

To compare our approach to a state-of-the-art system wesimpl
mented the algorithm from [3]. There, for each locatf@rthe prob-
ability distributions of thel0 strongest APs are determined during
the training phase and compared to those of the online merasumts
employing the Bhattacharyya coefficient.3Anearest neighbor rule

rithm was then applied to WiFi-based indoor positioning. fasas
we know, this is the first time a proper statistical treatmediRSSI
values below the sensitivity threshold of the device has lvaeried
out both in the offline training phase and the online classifin
stage.

The performance of the algorithms was first validated orfi-arti
cially generated data and then on real field data of an expetah
indoor positioning system. Improved positioning accuratyow
computational cost were observed, compared to other pedpais
gorithms.
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