
UNSUPERVISED WORD SEGMENTATION FROM NOISY INPUT
Jahn Heymann, Oliver Walter and Reinhold Haeb-Umbach Bhiksha Raj

University of Paderborn, Germany Carnegie Mellon University, USA

{walter,haeb}@nt.uni-paderborn.de bhiksha@cs.cmu.edu

http://nt.uni-paderborn.de http://mlsp.cs.cmu.edu

Introduction
•Segmentation of character sequence into words using
Bayesian nonparametric approach [Mochihashi09]

◮Example: iamatestsequence → i am a test sequence
•Here: Noisy character lattice with erroneous 1-best
sequence (using zerogram character language model)

◮Example: ioumotasdcekunce → i am a test sequence
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◮Assumption: correct character string present in lattice

•Outlook: Unsupervised language acquisition from speech

Iterative 2-step Algorithm

• Iterate: 1-best sequence extraction and word segmentation
1-best character sequence

Extract 1-best sequence

from lattice
Word Segmentation/

LM estimation

Language model probabilities

•Simultaneous error correction and word segmentation!
◮Exploiting consistency of character sequence within words

WFST based implementation

•WFST used to determine possible segmentations and their

sequence probability ⇒ Sample most likely segmentation

•Lexicon WFST consists of

known words and unknown

character sequences
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•Contains all possible

subsequences for a string

•Language model WFSA

resembles Pitman-Yor

Language model [Neubig10]
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•Building of lexicon WFST computationally feasible for a

single character sequence only ⇒ Two step algorithm
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Pitman-Yor Language Model [Teh06]

•Non-parametric i.e. unknown number of words
•Bayesian approach with power law prior (Zipf’s law)
•Probability for word w in context u recursively calculated as

Pr(w |u,S,Θ) =
cuw · − d|u|tuw

θ|u| + cu··
+
θ|u| + d|u|tu·

θ|u| + cu··
Pr(w |π(u),S,Θ)

•Nesting: For u = ∅ use likelihood of word wi being character

(phone) sequence c1, . . . , ck as base probability (fall back):

Pr(wi) ≈
k∏

i=1

Pr (ci|ci−n+1, . . . , ci−1,S,Θ)

•Probability for characters (phones) calculated as above

Experimental Setup

•Artificially generated lattices
•Database: Text prompts of WSJCAM0 training data
•White spaces between words removed
•String expanded to lattice by artificially including errors to X
percent of the characters:

◮Draw action from [insert|delete|substitute] uniformly
◮Draw character uniformly in case of substitution or insertion
◮Draw probability p of correct character uniformly from [0 . . . 1]
◮Add alternative character with weight 1 − p

Experimental results

•Bigram word/8-gram character language model
•Example segmentation:

1-best sequence (zerogram at first iteration):
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after 25 iterations:
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Figure 1: F-measure for characters and words over iterations at different strength of noise

•F-measure on clean error free sequence:
◮Bigram word LM: 36% [Neubig10], 65% (proposed)
◮Unigram word LM: 52% [Neubig10], 57% (proposed)

Conclusions
•Unsupervised vocabulary discovery from noisy input
• Iterative 2-step algorithm for simultaneous character error

correction and word segmentation
•Significantly outperforms earlier algorithm
•Outlook: Replace input character lattice by phoneme lattice

produced by ASR decoder

⇒Unsupervised (zero-resource) speech recognition
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