

Y S T MATION SY OBSERVATIONS SY OBSERVATIONS

Aleksej Chinaev Reinhold Haeb Umbach, University of Paderborn 33098 Paderborn, Germany, {chinaev, haeb}@nt.upb.de

Introduction

- Maximum A-Posteriori (MAP) estimate variate Gaussian Mixture Model (GMM) parameters
- GMM process superposed by an additive noise known statistics
- Derivation of an approximate conjugate prior GMM parameters

AP-based GMM Parameter S

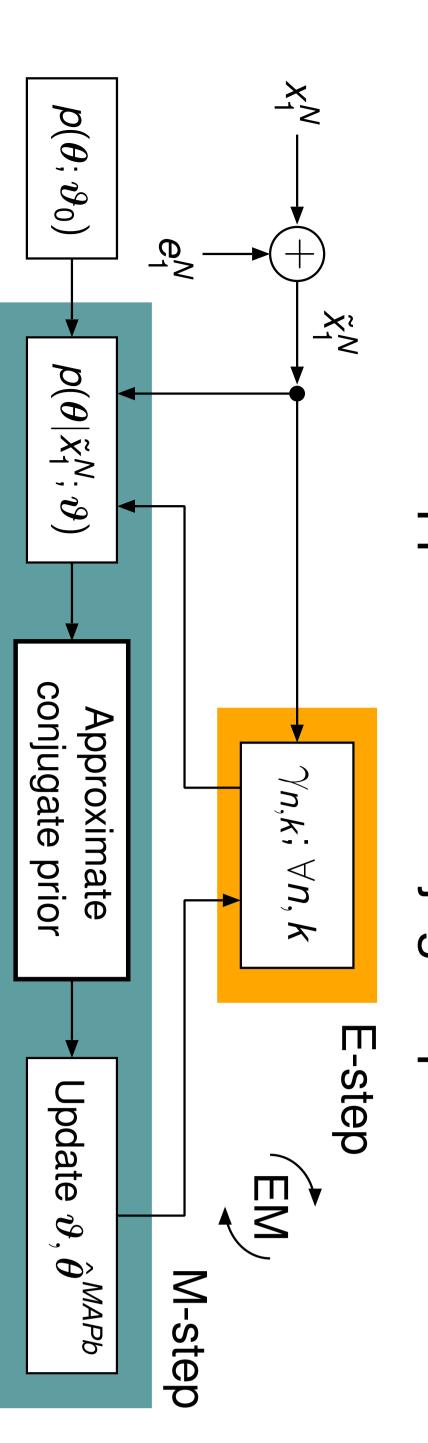
- Given noisy observation data block $\tilde{x}_1^N =$ $\{\tilde{x}_n\}$ *n*∈[1,*N*] with ×̃
- $x_n \sim \sum_{k=1}^K \omega_k \cdot \mathcal{N}(\mu_k, \sigma_k^2)$ with model order K and E)
- MAP-based estimate of a GMM parameter vector by using the EM approach with the auxiliary for inction μ_k
- $\hat{ heta}^{\mathsf{MAPb}}$ = argmax $p(\theta | \tilde{x}_1^N; \vartheta)$ = argmax $e^{Q(\theta,\hat{oldsymbol{ heta}})}$ $p(heta;artheta_0)$
- Error free observations
- A conjugate prior $p(\theta; \vartheta_0) = p(\omega) \cdot \prod_{k=1}^K \varphi_k$ $\text{meter vector } \boldsymbol{\vartheta}_0 = \{\xi_{k0}, \mathbf{m}_{k0}, \kappa_{k0}, \nu_{k0}, \lambda_{k0}^2; \forall k\}$ $\boldsymbol{\omega} = \text{Dir}(\boldsymbol{\omega} : \boldsymbol{\xi}_{k,n}) \quad \boldsymbol{\gamma}' \quad$ $p(\sigma_k^2)$ with $\boldsymbol{\sigma}$ hyperpara-
- $p(\omega) = \operatorname{Dir}(\omega; \xi_{k0})$ $p(\mu_k|\sigma_k^2) = \mathcal{N}(\mu_k; \mathbf{m}_{k0}, \sigma_k^2/\kappa_{k0})$ $p(\sigma_k^2)$ $^{2}(\sigma_{k}^{2};$ $\nu_{k0},$ $\lambda_{k0}^2)$
- Noisy observations
- Only $p(\omega)$ holds as a conjugate prior with an update \$ ξ_{k0}

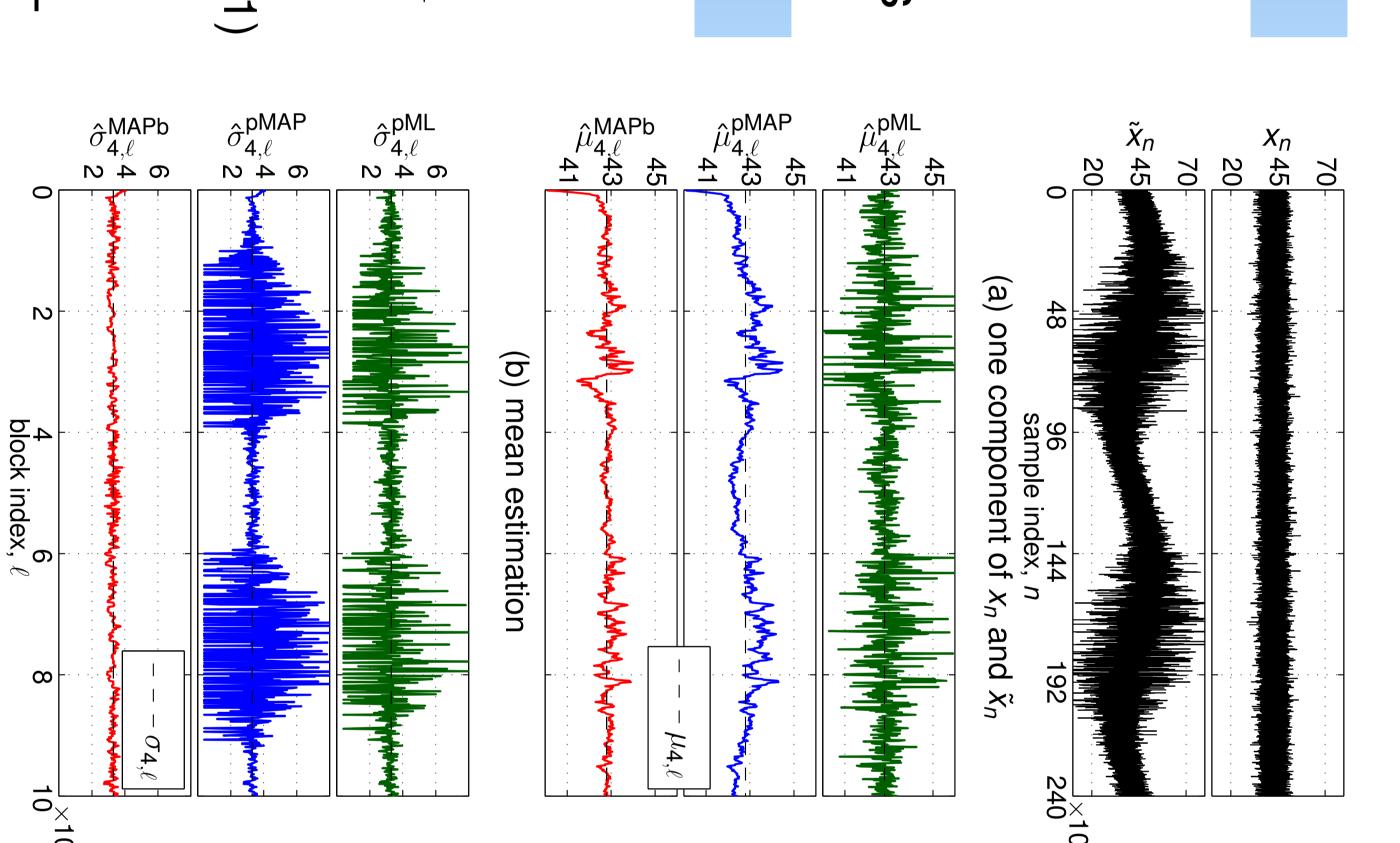
ullet $\gamma_{n,k}$ a responsibility that component k takes for

explaining'

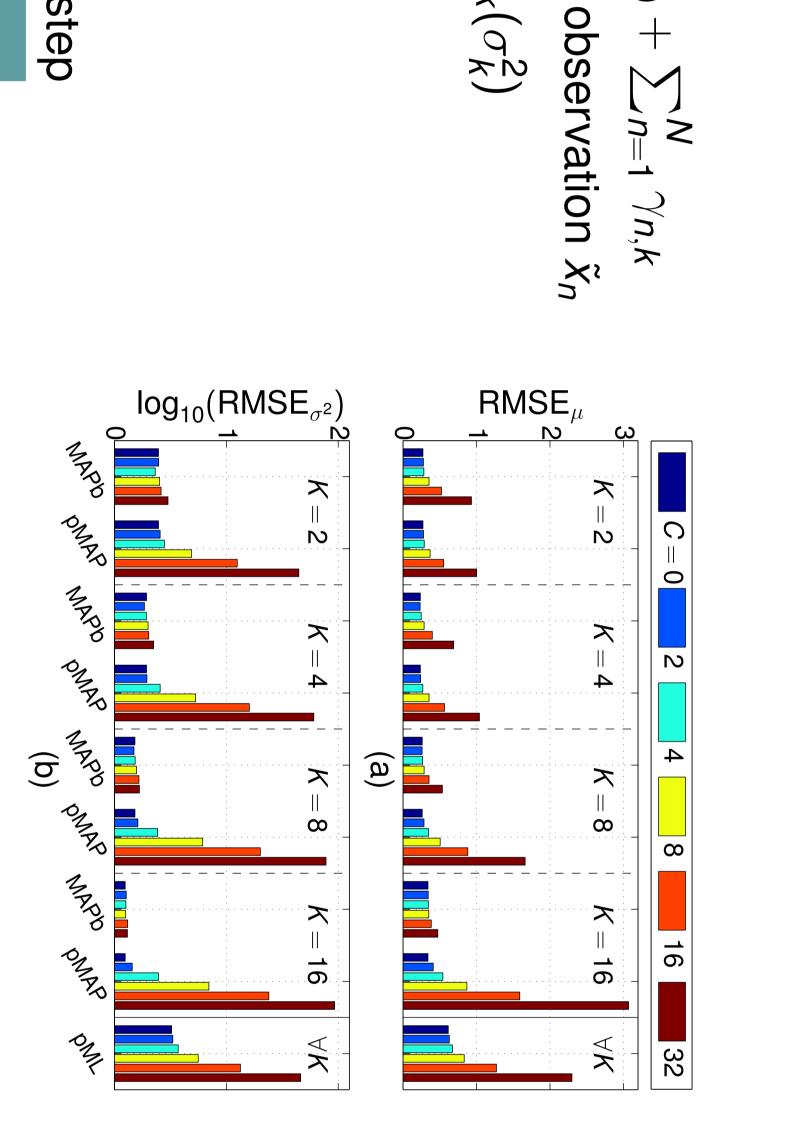
the

- Improper dependence of the update equations $m_k(\sigma_k^2)$ and $\kappa_k(\sigma_k^2)$
- $Si-\chi^2(\sigma_k^2; \nu_{k0}, \lambda_{k0}^2)$ is no longer a conjugate prior
- EM framework with an approximate conjugate prior





and Fig. <u>O</u> Samples) of 4th GN (c) estimation GMM component (a); Estimated standard ajectories (b) K = 8, C = 16). deviation



averaged over log₁₀(RMSE 2: Root-Mean-100 Squared experiments: r (RMSE) values (a) RMSE $_{\mu}$ and

<u>b</u>

Approximations to Obtain Conjugate Prior

- \bigcirc Replace σ_k^2 in $m_k(\sigma_k^2)$ and $\kappa_k(\sigma_k^2)$ by $\hat{\sigma}_k^2$
- 2 by $\mathrm{Si-}\chi^2$ distribution with the same Approximate remaining terms in $p(\theta|\tilde{x}_1^N;\vartheta)$, which depend on σ_k^2 , by Si- χ^2 distribution with the same mode $\hat{\sigma}_k^2$
- <u>(3)</u> Determine $\hat{\sigma}_k^2$ by the interval bisection and the Newton method

Simulation Results

- ullet $N=30\cdot K$ observations per data block for L=1000 blocks
- Nonstationary noise e_n and $\sigma_{E,\ell} \sim \mathcal{U}\left(0, C \cdot \sin^2(2\pi\ell/L)\right)$, $\sim \mathcal{N}(\mu_{E,\ell},\sigma_{E,\ell}^2)$ with $\mu_{E,\ell}=C\cdot\sin(4\pi\ell/L)/2$ Fig. 1(a)
- Reference approaches: plain ML (pML) and plain MAP (pMAP)

$$\text{with } \Omega \in \{\text{'ML'}, \text{'MAP'}\} \\ \hat{\mu}_{k,\ell}^{\text{p}\Omega} = \hat{\mu}_{k,\ell}^{\Omega} - \mu_{E,\ell} \\ \hat{\sigma}_{k,\ell}^{\text{p}\Omega} = \begin{cases} \sqrt{(\hat{\sigma}_{k,\ell}^{\Omega})^2 - \sigma_{E,\ell}^2} & \text{for } \hat{\sigma}_{k,\ell}^{\Omega} > \sigma_{E,\ell} \\ \min(\hat{\sigma}_{k,1:\ell}^{\text{p}\Omega}) & \text{otherwise} \end{cases}$$

- Sequential estimation setup for both MAP approaches
- Posterior estimated on the previous block as a-priori for the next block
- Proposed MAPb method delivers t he best trajectories, Fig.1(b)-(c)
- Estimates $\hat{\mu}_{4,\ell}^{\text{pML}}$, $\hat{\sigma}_{4,\ell}^{\text{pML}}$ and $\hat{\sigma}_{4,\ell}^{\text{pMAP}}$ result in a too large variance
- For all tested conditions MAPb performs better than pML, Fig.2
- growing GMM order K and for large noise power Superiority of the MAPb over pML and pMAP becomes larger with

Conclusions

- Proposed method delivers GMM parameter estimates with significantly lower error variance compared to plain ML and MAP methods
- $oldsymbol{\circ}$ Superiority of MAPb approach holds also in tracking time-variant $oldsymbol{ heta}_\ell$
- An efficient estimation of GMM parameters in a sequential framework