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Abstract—In this paper we present a system for car navigation
by fusing sensor data on an Android smartphone. The key
idea is to use both the internal sensors of the smartphone
(e.g., gyroscope) and sensor data from the car (e.g., speed
information) to support navigation via GPS. To this end we
employ a CAN-Bus-to-Bluetooth adapter to establish a wireless
connection between the smartphone and the CAN-Bus of the
car. On the smartphone a strapdown algorithm and an error-
state Kalman filter are used to fuse the different sensor data
streams. The experimental results show that the system is able
to maintain higher positioning accuracy during GPS dropouts,
thus improving the availability and reliability, compared to GPS-
only solutions.

Index Terms—Smartphone, navigation, sensor fusion

I. INTRODUCTION

In the past decade mobile phones have undergone a tremen-

dous paradigm change. At first only intended for human-to-

human communication purposes, the mobile phones evolved

towards “smartphones” offering services and techniques for

different applications. The technical break-through became

possible by new human-machine interfaces (e.g., touchscreens,

speech technologies), high and affordable data rates of mobile

networks, and by new powerful and simultaneously energy

efficient microprocessors. Modern smartphones support a mul-

titude of wireless communication protocols, be it for cellular

communications (e.g., UMTS, LTE), for short range, high

data rate connections (BT, WLAN) or for very short range

contactless data exchange, e.g., for payment services (NFC).

One of the first add-ons not related to communication was

the integration of GPS (Global positioning system) receivers,

thus enabling positioning and navigation services for the user.

Smartphone-based positioning has found widespread use both

for indoor positioning [1] and as an alternative to built-in

navigation system for cars. Their main advantages compared

to dedicated devices for car navigation are reduced costs, as no

extra hardware needs to be purchased, and increased flexibility,

because the device can be used both for on-board and off-board

navigation.

However, a well-known deficiency of GPS-only navigation

is that no positioning information is available during GPS

dropouts, which may occur, e.g., in narrow street canyons,

tunnels or parking garages. Higher availability of precise

positioning information is therefore obtained by built-in car

navigation systems which utilize inertial measurement units

(IMUs) and other information (e.g., car speed information,

vector maps, map matching) to predict the position of the car

based on the last position information before the GPS dropout.

This is particularly important for applications where the po-

sitioning information is used for electronic toll collection, as,

e.g., in the German truck toll collecting system [6].

In the following we propose an approach which aims at

achieving the same high precision positioning as built-in car

navigation systems, however without additional hardware and

installation costs. To this end we realized a sensor fusion

algorithm on a smartphone which combines the GPS data with

angular velocity information from the gyroscope sensors of

the smartphone and, further, with the car speed information

obtained from the vehicle’s CAN-Bus via a wireless CAN-

Bus-to-Bluetooth (CAN-BT) adapter. Sensor fusion is carried

out by an error-state Kalman filter, whose complexity has been

reduced such that it operates well below real-time.

Currently, many car manufacturers pursue approaches to in-

tegrate smartphones in cars to realize telematics or multimedia

services, such as Mercedes Benz’MBrace [3], Ford’s Sync [2],

Toyota’s Entune [4] or BMW’s ConnectedDrive [5]. These

proprietary systems allow access to the home entertainment

system from within the car, or provide car information to the

user (e.g., battery charge status of electric/hybrid cars). To

the best of our knowledge, however, no such system realizes

a sensor fusion algorithm as proposed here which aims at

achieving positioning accuracy and availability that could be

used for such sensitive applications as tolling services.

In section II we give a brief overview of the proposed

system, explaining the overall system architecture and its

components. More details about the components and the

underlying algorithms for the sensor data fusion can be found

in section III. Section IV shows some sample experimental

results obtained from real world data, while section V shows

some results of simulations carried out using real world data.

Finally, in section VI we draw some conclusions and give an

outlook.

II. SYSTEM OVERVIEW

The key component of the proposed positioning system

is an Android [7] smartphone, which hosts the applications

for navigation and sensor fusion. It has multiple hardware

components of which we mainly use the GPS receiver, the

gyroscope and the Bluetooth receiver (see Fig. 1).
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Fig. 1. System overview showing hardware and software components

A. Global Positioning System

The built-in GPS receiver delivers position information in

the NMEA 0183 string format. GPS information is the main

source of positioning information. In case of GPS signal loss,

the last GPS position information available before the dropout

is used to initialize the IMU-based positioning.

B. Gyroscope

The gyroscope delivers information about the angular ve-

locities of the smartphone in three orthogonal directions.

However, the measurements of the inexpensive smartphone

sensor suffer from bias errors and sensor data drifts such that

a post filtering is required.

C. CAN-Bus-to-Bluetooth Adapter

A CAN-BT adapter is plugged to the car CAN-Bus, which

continuously reads the CAN-Bus data and sends them via

Bluetooth to the smartphone. In the work presented here

we only employ the car speed information read from the

CAN-Bus. Beforehand, a negotiation procedure for pairing the

smartphone and the CAN-BT adapter has to be performed. A

pairing procedure via NFC is planed for future versions of

the system to improve the usability. So far, tests in different

cars from various manufacturers showed no compatibility

problems.

D. Data Rates

The GPS receiver offers position information at a rate of 1

positioning sample per second. Gyroscope data is available at

an average data rate of 21 values per second, while the CAN-

Bus data are transmitted via Bluetooth at a rate of 2 speed

values per second.

The sensor fusion application harmonizes the different data

rates of the sensors by increasing the sampling rates of the low

rate data streams using sample and hold blocks. Computing

position estimates at this high rate has the advantage, that

improved positioning precision in-between GPS values is

available compared to just holding the GPS output until the

next GPS position estimate becomes available.

III. SENSOR FUSION ALGORITHM

In Fig. 2 the block diagram of the sensor fusion is depicted.

The colors of the computing blocks and connections indicate

the processing/data rates. The strapdown algorithm operates at

the high data rate of the gyroscope (blue color). We run the

Kalman filter with the GPS data rate (orange color) and use

sample and hold (S&H) blocks to harmonize its data stream

with the strapdown processing block.

The main idea of the sensor fusion algorithm is to combine

the absolute value of the velocity vCAR of the car provided

by the CAN-BT adapter with the direction of movement

information ψ̂CAR of the car provided by the smartphone to

compute an estimate of the change in position of the car. ψ̂CAR

is obtained either by fusing direction information of GPS and

IMU using an error-state Kalman filter or by the output of the

IMU alone in case of GPS signal loss.
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Fig. 2. Block diagram of the sensor fusion approach

In the following we are going to briefly outline the strap-

down algorithm. The three-dimensional angular velocity vector

ωINS provided by the gyroscope sensors of the smartphone is

used in the strapdown inertial navigation algorithm to calculate

an estimate of the Euler angles roll φ, pitch θ and yaw

ψ, which describe the orientation of the smartphone in 3-

dimensional space [8], [10]. Let

r(k) =


 cos

(
‖ωINS(k)‖·T

2

)

ωINS(k)
‖ωINS(k)‖

sin
(

‖ωINS(k)‖·T
2

)

 (1)

denote the quaternion formed from the angular velocity vector

measured by the gyroscope, where k denotes the discrete time

index and T the sampling interval of the gyroscope. The

strapdown inertial navigation algorithm iteratively calculates

the current orientation q(k) based on the orientation in the

last time step and current sensor data via

q(k) = q(k − 1) • r(k), (2)

where the operand • denotes quaternion multiplication. The

calculation of the orientation as a quaternion was chosen to

guarantee stability and avoid a gimbal-lock which could occur

when directly using Euler angles instead. The estimate of the

vector of Euler angles Ψ̂INS =
(
φ̂INS, θ̂INS, ψ̂INS

)T

is then

obtained by transformation of the quaternion

Ψ̂INS(k) = fq2e (q(k)) , (3)



where the function fq2e denotes the transformation of the

orientation stored as a quaternion to Euler angles via the

direction cosine matrix [10]. The resulting value of the yaw

angle ψ̂INS(k) is then taken as the estimate of the course of

the car if no GPS is available:

ψ̂CAR(k) := ψ̂INS(k). (4)

Equating the direction of movement of the car with the yaw

angle of the smartphone, irrespective of the orientation of the

phone in 3-dimensional space is allowable, because we can

freely rotate around the local vertical, as long as we are not

interested in the remaining angles φ̂INS and θ̂INS relative to

the car.

By combing the direction of movement with the absolute

value of the velocity of the car, vCAR, read out from the CAN-

BT device, we arrive at an estimate for the change in position.

Assuming a movement on a 2-dimensional plane, where ψ̂CAR

is the angle of the direction of movement of the vehicle relative

to the north direction, counting from the north direction to the

east direction, we can estimate the velocity of the vehicle in

the north vn and the east direction ve using the following

equations:

vn(k) = vCAR(k) · cos
(
ψ̂CAR(k)

)
(5)

ve(k) = vCAR(k) · sin
(
ψ̂CAR(k)

)
(6)

The car position is then stored in GPS coordinates as latitude

ϕ and longitude λ, which can be calculated using the following

equations, where R = 6371 · 103m is the mean earth radius:

ϕ(k) = ϕ(k − 1) +
T · vn(k)

R
(7)

λ(k) = λ(k − 1) +
T · ve(k)

R cos (ϕ(k))
. (8)

Due to the integration of sensor data over time and the

iterative calculation of the orientation using the strapdown

inertial navigation algorithm, sensor errors such as additive

noise and sensor bias will result in an error in the estimated

orientation which increases over time. This is compensated by

fusing the INS positioning information with GPS information

in case the GPS signal is available. This sensor fusion is

done using an error-state Kalman filter (ESKF), as proposed,

e.g., in [9]. The ESKF estimates errors in the navigation

solution rather than the navigation solution itself. This has

various advantages, among which the reduced complexity due

to the lower data rate is most important for a realization on

a smartphone, which should eat up as little battery power as

possible. Note that the ESKF operates at the lower GPS data

rate rather than at the high gyroscope data rate, see Fig. 2.

To even further reduce the complexity we assume a scalar

error model:

ψ̂INS(k) = ψ(k) + ∆ψINS(k) (9)

∆ψINS(k) = ∆ψINS(k − 1) + w(k), (10)

where ψ(k) denotes the true direction of movement of the

car at the time index k. The estimation error in direction is

denoted by ∆ψINS(k) and modeled as a random walk process,

where w(k) ∼ N
(
0, σ2

w

)
is white Gaussian noise modeling

the change in the orientation error at every time step.

The error in the orientation, ∆ψINS(k), is estimated using

the error-state Kalman filter. To obtain a measurement of this

error we use the GPS measurement

ψ̂GPS(k) = ψ(k) + v(k) (11)

of the course over ground (cog), where v(k) ∼ N
(
0, σ2

v

)

is the error in the GPS measurement which is modeled as

white Gaussian noise. A measurement ∆ψ̃(k) for the error in

orientation is then given by

∆ψ̃(k) = ψ̂INS(k)− ψ̂GPS(k)

= ψ̂INS(k)− (ψ(k) + v(k))

= ∆ψINS(k)− v(k). (12)

This is the measurement equation of the ESKF, while the state

equation is given by eq. (10) above.

The estimate ∆̂ψINS(k) for the orientation error and its

a-priori error variance p(k|k − 1) can be calculated by the

following equations, where g(k) denotes the Kalman gain:

g(k) =
p(k|k − 1)

p(k|k − 1) + σ2
v

(13)

∆̂ψINS(k) = g(k)∆ψ̃(k) (14)

p(k + 1|k) = p(k|k − 1) (1− g(k)) + σ2
w
. (15)

Note that no state update is required, since the filter’s state

vector is reset to zero after each iteration and correction of

the direction [8].

After the estimation of the error we use equation (9) to

correct the orientation estimate:

ψ̂+
INS(k) = ψ̂INS(k)− ∆̂ψINS(k). (16)

This is the improved estimate of the car course, ψ̂CAR(k) :=
ψ̂+
INS(k), which can be computed if GPS is available. It

replaces the estimate of eq. (4) and is used in eq. (5) and eq. (6)

to determine the velocity and, subsequently, the position of the

car. It is further used in the next time step for the orientation

calculation in the strapdown inertial navigation algorithm.

Because of this feedback of the error to the orientation

calculation the filtering approach is also called a feedback

error-state Kalman filter.

The remaining elements of the Euler angles vector Ψ̂INS

can be supported by a similar algorithm as described above.

In the case of the roll angle φ̂INS and the pitch angle θ̂INS

one could use the measurements of the accelerometers and

the local gravity estimate to calculate the corresponding angles

and then form a error-state model similar to eq. (10).

IV. EXPERIMENTAL RESULTS

In this section we describe three test runs in a car to

demonstrate the benefits of our approach in a real world

scenario, before carrying out a more quantitative evaluation

in the subsequent section. Each of the test runs demonstrates



different properties of the proposed system. In the first exper-

iment the car position is estimated assuming all sensor data

to be available. Next, absence of GPS position information

is assumed, while GPS direction information is still used

to correct the IMU’s direction estimates. Third, neither GPS

position nor direction information is used to track the car.

Fig. 3 displays the results of the first test run. Here, we

periodically used the GPS position information (red circles) to

re-initialize the position estimate of the strapdown algorithm.

In between two GPS estimates, the position of the car was

predicted using the corrected direction estimate, eq. (16), and

the car’s velocity according to eqs. (5) - (8) (blue curve). Note

that the sharp right turn could be better predicted by this sensor

fusion than by holding the GPS estimates until the next GPS

position estimate becomes available. This mode will be used

when GPS measurements are available to increase the position

accuracy in between two measurements.
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In a second test run, depicted in Fig. 4, we drove around a

block of houses in clockwise direction. During this experiment

the GPS position estimate was used once to initialize the first

position. The arrow indicates this position and the driving

direction. From there on, the GPS position information was

dropped and only the GPS direction information was used

to calculate the measurement input of the ESKF. This setup

was chosen to demonstrate the usefulness of the velocity

information of the car’s speedometer when combined with the

direction estimate. We again used the strapdown algorithm in

combination with the Kalman filter to estimate the position of

the car (blue curve). The red circles indicate the GPS estimate

of the car position, which are included in the figure to serve

as a kind of ground truth.

In the third test run, depicted in Fig. 5, we drove around

the same block of houses as in the previous test run. This time

we also dropped the use of the GPS direction estimate, thus

simulating a true GPS dropout. The GPS position and direction

estimate was used once at the beginning of the trajectory to
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initialize the strapdown algorithm. For the rest of the trajectory

we used the strapdown algorithm to predict the position using

the uncorrected direction estimate of the IMU and the car’s

speed and no GPS information whatsoever. This experiment

clearly shows the benefit of our algorithm to track the car

in case of a GPS dropout. During the first and second turn

we were able to maintain track of the direction and position

change, while the third turn was not estimated quite as well

due to error accumulation of the uncorrected IMU in the course

of time.
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V. SIMULATION RESULTS

To quantitatively evaluate the performance of our algorithm

we performed some simulations. For the simulations we used



recorded field data and simulated GPS dropouts in circular

regions around randomly chosen positions pdrop with a given

radius r. This way of simulating a GPS dropout accounts for

the fact that a GPS signal loss is usually spatially localized,

i.e., it occurs in the vicinity of obstructions like buildings or

tunnels. As no other ground truth was available, we again

employed the GPS position estimates and linearly interpolated

between two estimates to get the vector pGPS(k) as the true

values of the position. Clearly, a GPS dropout for a given

GPS ”ground truth” measurement pGPS(k) is assumed if the

condition

‖pGPS(k)− pdrop‖ < r (17)

is met, else there will be no dropout.

During a GPS dropout our algorithm uses the uncorrected

direction estimate of the IMU and the car’s speed to compute

the position estimate, denoted by pINS(k). As a baseline,

against which we compared the performance of our algorithm,

we kept the last known GPS course and speed before the

dropout constant and used them to predict the following

positions, denoted by phold(k).
As a performance measure we used the root mean square

error (rmse) ∆p between the positions p(k) estimated by the

algorithms and the ground truth GPS positions:

∆p =

√√√√ 1

N

N∑

k=1

‖p(k)− pGPS(k)‖
2
, (18)

where p(k) is to be replaced by either pINS(k) or phold(k),
and N is the number of position estimates during dropout.

For the simulations we used measurements recorded during

a test drive of approximately 6.5km length and 10 minutes

duration. The recorded data consisted of approximately 600

GPS, 13000 gyroscope and 1200 speed measurements. During

the simulations each of the 600 GPS measurements was chosen

alternately as dropout center pdrop, and the dropout radius was

modified from 50 to 600 meters in steps of 50 meters.

TABLE I
RMS OF PROPOSED ALGORITHM (∆pINS) AND BASELINE ALGORITHM

(∆phold) DURING DROPOUT AND ERROR AT THE END OF A DROPOUT. ALL

VALUES IN METERS.

r [m] ∆pINS ∆phold ∆pINS(N) ∆phold(N)

50 7.0 31.4 10.8 52.1

100 12.7 59.5 22.3 113.2

150 21.3 91.9 39.6 179.6

200 31.9 128.8 63.8 259.6

250 51.4 165.3 103.9 333.8

300 73.3 198.0 152.5 393.6

350 96.1 233.1 211.6 449.5

400 129.0 275.1 289.8 521.6

450 160.4 316.4 385.2 596.1

500 203.4 351.5 492.8 652.9

550 253.7 397.2 608.1 732.4

600 306.9 452.9 707.7 817.1

Table I shows the resulting rmse values for different dropout

radii. Additionally the rmse values ∆pINS(N) and ∆phold(N)
for the last position estimates during the dropouts are given

as an indication of the maximum error which presumably

occurs at the end of a dropout. The positioning error during a

GPS dropout using our algorithm is much smaller compared

to a position estimate based on the last valid GPS course

and speed value before dropout. Further, the error during and

at the end of a dropout is almost always smaller than the

radius of the dropout region when using our algorithm. It is

not surprising that the performance of the proposed algorithm

decreases with increasing dropout radius r. This is due to the

error accumulation of the uncorrected IMU in the course of

time.

The figures 6 and 7 show two examples of a GPS dropout

with a radius of 100 meters. In Figure 6 a left turn was taken

during a dropout. Our algorithm (blue curve) is capable of

following the GPS (ground truth) trajectory as indicated by

the red circles. On the other hand, holding the GPS course and

speed (red curve) results in a straight line and a big difference

to the ground truth track, since there is no information avail-

able about the change in direction. This scenario could, e.g.,

occur for a left turn at an intersection. Using our algorithm

a navigation system will be able to correctly navigate to the

destination while in the case of holding the GPS velocity and

course it could assume to be on the wrong road and start giving

false direction information.
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Figure 7 shows a GPS dropout while driving an almost

straight line. Our algorithm follows the GPS track and finishes

close to the last ground truth position. Holding the GPS

course seems to be a good idea while driving a straight

line, but holding the GPS speed still results in an increasing

error in position. The reason for this is that acceleration and

deceleration of the car remain unnoticed during the GPS

dropout.

The simulation results show the advantages of our algorithm
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as it keeps track of the change in velocity by directly using

the measurements provided by the speedometer of the car and

the change in course by using the smartphone’s gyroscope to

estimate course and position.

VI. CONCLUSIONS

We have presented a smartphone based sensor fusion algo-

rithm which combines GPS information with the smartphone’s

internal gyroscope and the car’s speedometer data to track the

position of a moving car. Sensor fusion is carried out using a

computationally inexpensive error-state Kalman filter.

Test drives and simulations have been carried out to demon-

strate the usefulness of the sensor fusion, in particular in the

case of GPS dropouts. The experiments showed that the pro-

posed algorithm achieves significantly improved positioning

accuracy compared to predicting the position on the basis of

the most recent GPS course and speed estimate before the GPS

signal loss.

The developed approach combines the advantages of

smartphone-only positioning and positioning by built-in vehi-

cle navigation systems: It preserves the cost effectiveness and

flexibility of smartphone based navigation systems, while at

the same time achieving a positioning accuracy and availability

towards (expensive) IMU stabilized navigation systems of cars.

In future work we will extend the sensor fusion to include

information of a digital map to further increase the accuracy

and allow navigation through larger GPS dropout regions.

Also, the possibility of using more complex error models and

filter algorithms will be investigated.
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