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The power compensation constant plays an important role in the observation model for reverberant

speech signals [1], [2], whose derivation will be repeated here for convenience.

Note that to introduce the used notation and to set this technical report into proper context, Sec. I

and Sec. II are directly taken from [1], which has recently been submitted to IEEE Transactions on

Audio, Speech And Language. The experienced reader may thus skip these sections and directly proceed

to Sec. III.

I. OBSERVATION MODEL FOR REVERBERANT-ONLY SPEECH SIGNALS

In the absence of background noise, the discrete-time microphone signal s(l) is given by the convolution

of the clean speech signal x(l) with the acoustic impulse response (AIR) h(l). According to [2], the

corresponding STDFT S(m,k) may be expressed as

S(m,k) =

K−1
∑

k′=0

LH
∑

m′=−LH,ℓ

X(m−m′, k′)hk,k′(m′) (1)

with

hk,k′(m′) :=

Lh−1
∑

p′=0

h(p′)φk,k′(m′B − p′) (2)

and

φk,k′(l) := ej
2π

K
k′l

Lw−1
∑

l′=0

wA(l
′)wS(l

′ + l)e−j 2π

K
(k−k′)l′ . (3)

The terms hk,k′(m′) will in the following be referred to as cross-band filters for k 6= k′ and as band-to-

band filters for k = k′, as in [3]. The lengths LH,ℓ and LH in (1) are defined by

LH,ℓ :=

⌊

Lw − 1

B

⌋

, LH :=

⌊

Lh + Lw − 2

B

⌋

. (4)

Further, wS(l
′) denotes a synthesis window, which is bi-orthogonal to wA(l

′) [4] and has the same support

as wA(l
′). For the power of S(m,k) we now write

|S(m,k)|2 = CP

LH
∑

m′=0

∣

∣X(m−m′, k)
∣

∣

2 ∣
∣hk,k(m

′)
∣

∣

2
+ E(S)(m,k). (5)

The introduced constant CP and the error term E(S)(m,k) thereby capture all terms incurring when the

square of the sum given in (1) is approximated by the sum of the squares while also ensuring a causal

relationship by dropping all negative frame indices. The constant CP will be determined such that the

error term E(S)(m,k) is zero-mean, or, equivalently,

E

[

∣

∣

∣
S̆(m,k)

∣

∣

∣

2
]

!
=E

[

CP

LH
∑

m′=0

∣

∣

∣
X̆(m−m′, k)

∣

∣

∣

2 ∣
∣

∣
h̆k,k(m

′)
∣

∣

∣

2
]

. (6)
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Note that in (6) and in the following, we use the breve mark (̆·) to distinguish a random variable from

its realization. Due to the role of the constant CP in (6), it is in the following referred to as the power

compensation constant. Besides being additive in the targeted LMPSC domain, choosing a multiplicative

constant CP rather than an additive term to compensate for the bias introduced by the approximation

is advantageous, since the desired compensation is made independent of the power of the clean speech

signal and that of the AIR.

Note, that the approximation presented here is more general than that in [2], where we chose an

empirical value of (Lw/B)2.

By further introducing the mean of |hk,k(m
′)|2 over the qth mel band, i.e.,

H̄m′,q :=
1

K
(u)
q −K

(ℓ)
q + 1

K(u)
q
∑

k=K
(ℓ)
q

∣

∣hk,k(m
′)
∣

∣

2
, (7)

the MPSCs Sm,q of the reverberant speech signal can be written as

Sm,q = CP

LH
∑

m′=0

H̄m′,qXm−m′,q + E(S)
m,q (8)

=: S̃m,q + E(S)
m,q. (9)

Hereby Xm,q denote the MPSCs of the clean speech signal and E
(S)
m,q the error resulting from the

approximation of Sm,q by S̃m,q.

By introducing the logarithmic mel power spectral representation of the AIR

h̄m′,q := ln
{

H̄m′,q

}

(10)

and the LMPSC of the clean speech signal

xm,q := ln {Xm,q} , (11)

we are now able to express the LMPSCs of the reverberant speech in terms of the underlying LMPSCs

of the clean speech and the LMPSCs of the AIR, i.e.,

sm,q := ln {Sm,q} = s̃m,q + v(s)m,q, (12)

where

s̃m,q := ln
{

S̃m,q

}

= ln

{

CP

LH
∑

m′=0

exm−m′,q+h̄m′,q

}

. (13)
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Thereby, employing the definition of S̃m,q given in (9) instead of the equivalent formulation given in

(13), the additive observation error in the LMPSC domain

v(s)m,q :=sm,q − s̃m,q = ln {Sm,q} − ln
{

S̃m,q

}

(14)

= ln



















Sm,q

LH
∑

m′=0
H̄m′,qXm−m′,q



















− ln {CP} (15)

captures the errors from the approximation of Sm,q by S̃m,q in the MPSC domain. Note that the choice

of CP only affects the mean of the observation error v
(s)
m,q.

By introducing the observation mapping

fs
(

xm−LH :m, h̄0:LH

)

:= ln

{

CP

LH
∑

m′=0

exm−m′+h̄m′

}

, (16)

where the mathematical operations are understood to be performed on the vectors component-wise, the

relationship (12) may compactly be formulated by

sm = fs
(

xm−LH :m, h̄0:LH

)

+ v
(s)
m , (17)

where xm−LH :m := {xm−LH
, ...,xm} and h̄0:LH

:=
{

h̄0, ..., h̄LH

}

denote sequences of LH + 1 Q-

dimensional vectors.

II. ACOUSTIC IMPULSE RESPONSE MODEL

The observation model (17) requires the logarithmic mel power spectral representation of the AIR

h̄0:LH
. In practice, however, this representation is usually unknown. To avoid a sensitive blind estimation

of the AIR for a computation of h̄0:LH
, we have proposed in [2] to employ a stochastic AIR model, which

has previously been introduced in [5]. According to this model, the AIR is regarded to be a realization

of a stochastic process h̆(l) according to

h̆(l) = σhv̆h(l)χh (l) e
−

l

τh , (18)

where v̆h(l) is a zero-mean white GAUSSIAN stochastic process of unit power. The indicator function

χh (l) :=











1 for 0 ≤ l ≤ Lh − 1

0 else

(19)
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assures the AIR to be causal having a finite length Lh. The term e
−

l

τh causes an exponentially decaying

envelope, where the decay constant τh depends on the reverberation time T60 through

τh =
T60

3 ln (10)TS
, (20)

with TS denoting the sampling duration. The constant σh may be used to control the AIR energy. The

advantage of using this model is that it has only two parameters, i.e., τh and σh, which can be estimated

more easily than the complete AIR.

Based on the AIR model (18) a reasonable length Lh may be determined in dependence on τh by

Lh = Lh (τh) =
⌈

−
τh
2
ln (ǫh)

⌉

, (21)

which is obtained by minimizing the AIR length under the constraint that the relative energy of the

neglected part of the AIR is smaller than ǫh [2].

It has been shown in [6] that the PDFs of the individual components ˘̄hm′,q of the logarithmic mel

power spectral AIR representation ˘̄
h0:LH

can be well modeled by GAUSSIANS.

Moreover, their respective means and variances have been found to only depend on the decay constant

τh, the energy term σh and on parameters of the ETSI Standard Front-End.

As we have previously done in [2], we therefore propose to approximate the usually unknown loga-

rithmic mel power spectral representation of the AIR h̄0:LH
by its mean µ˘̄

h0:LH

under the AIR model

(18). By doing so, the time-variance of the AIR due to, e.g., small movements of the speaker is absorbed

through the observation error to a certain degree.

Having introduced the stochastic AIR model, we are able to compute the power compensation constant

CP from condition (6) by using the AIR model and two additional assumptions. We assume the AIR

and the clean speech signal to be mutually independent and the latter to be a realization of a zero-mean

white GAUSSIAN stochastic process. Under these assumptions, the derived CP is given by

CP =
CN

CD
, (22)

where

CN := K2
LH
∑

m′,m′′=−LH,ℓ

Lw−1
∑

l=0

wA(l)wS(l)wA(l +
(

m′′ −m′
)

B)wS(l +
(

m′′ −m′
)

B)

·

Lw−1
∑

l′=−Lw+1

χh

(

m′B − l′
)

e
−

2(m′B−l′)
τh w2

A(−l
′ + l), (23)

CD :=

[

LH
∑

m′=0

Lw−1
∑

l′=−Lw+1

w2(−l′)χh

(

m′B − l′
)

e
−

2(m′B−l′)
τh

](

Lw−1
∑

l=0

w2
A(l)

)

(24)
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and

w(l) :=

Lw−1
∑

l′=0

wA(l
′)wS(l

′ − l). (25)

In practice, it is reasonable to precompute the power compensation constant for a set of predefined

reverberation times prior to applying any of the observation models, e.g., to feature enhancement and

successive ASR, and choose CP based on an estimate of the reverberation time.

III. DERIVATION OF POWER COMPENSATION CONSTANT

The constant CP is introduced to obtain a tractable estimate of the power of the STDFT of the

reverberant speech signal. We propose to choose it to satisfy the constraint (6), where the expectation is

assumed to be taken over all possible clean speech signals and AIRs, which are possible for fixed constants

T60 and σ2h. The basis for the derivation is the stochastic AIR model (18). With it, the band-to-band filters

hk,k(m) may be expressed by

hk,k(m) =

Lh−1
∑

p′=0

h(p′)w(p′ −mB)ej
2π

K
k(mB−p′) (26)

using (2), (3) and (25). After applying the variable substitution l = p′ −mB to (26), we obtain

hk,k(m) =

Lw−1
∑

l=−Lw+1

h(l +mB)w(l)e−j 2π

K
kl. (27)

Assuming the AIR to be a realization of the stochastic process h̆(l) defined in (18) whose auto-correlation

function is given by

E
[

h̆(l)h̆(l′)
]

= σ2hδ
(

l − l′
)

χh (l) e
−

2l

τh , (28)

with δ (l) denoting the DIRAC delta function, we can employ (27) and (28) to finally obtain

E

[

∣

∣

∣
h̆k,k(m)

∣

∣

∣

2
]

= E





∣

∣

∣

∣

∣

Lw−1
∑

l=−Lw+1

h̆(l +mB)w(l)e−j 2π

K
kl

∣

∣

∣

∣

∣

2


 (29)

=

Lw−1
∑

l=−Lw+1

σ2h χh (l +mB) e
−

2(l+mB)

τh w2(l) (30)

For a feasible solution we further assume the clean speech signal x(l) to be a realization of a white

GAUSSIAN stochastic process x̆(l) with power σ2x, which is stochastically independent of the AIR. The

auto-correlation function of its STDFT may thus be expressed as

E
[

X̆(m−m′, k′)X̆∗(m−m′′, k′′)
]

= σ2xe
j 2π

K
k′′(m′′−m′)B

Lw−1
∑

l=0

wA(l)wA(l +
(

m′′ −m′
)

B)e−j 2π

K
(k′−k′′)l. (31)
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The auto-correlation function of the cross-band filters can be written with (2) and (28) as

E
[

h̆k,k′(m′)h̆∗k,k′′(m′′)
]

= E





Lh−1
∑

l,l′=0

h̆(l)h̆(l′)φk,k′(m′B − l)φ∗k,k′′(m′′B − l′)



 (32)

= σ2h

Lh−1
∑

l=0

χh (l)φk,k′(m′B − l)φ∗k,k′′(m′′B − l)e
−

2l

τh . (33)

Exploiting the fact that the support of φk,k′(l) is given by [−Lw + 1, Lw − 1], (33) may be reformulated

using the variable substitution l′ = m′B − l by

E
[

h̆k,k′(m′)h̆∗k,k′′(m′′)
]

= σ2h

Lw−1
∑

l′=−Lw+1

φk,k′(l′)φ∗k,k′′(l′ +
(

m′′ −m′
)

B)χh

(

m′B − l′
)

e
−

2(m′B−l′)
τh . (34)

With (31) and (34), the power compensation constant CP may now be computed by separately

considering the left and right hand side of (6).

a) Left hand side of (6): Making use of the stochastic independence of the clean speech signal and

the AIR, the left hand side of (6) may be written as

E

[

∣

∣

∣
S̆(m,k)

∣

∣

∣

2
]

=

LH
∑

m′,m′′=−LH,ℓ

K−1
∑

k′,k′′=0

E
[

X̆(m−m′, k′)X̆∗(m−m′′, k′′)
]

E
[

h̆k,k′(m′)h̆∗k,k′′(m′′)
]

. (35)

By plugging the found relationships (31) and (34) into (35), we arrive at

E

[

∣

∣

∣
S̆(m,k)

∣

∣

∣

2
]

= σ2xσ
2
h

LH
∑

m′,m′′=−LH,ℓ

Lw−1
∑

l=0

wA(l)wA(l +
(

m′′ −m′
)

B)

·

Lw−1
∑

l′=−Lw

χh

(

m′B − l′
)

e
−

2(m′B−l′)
τh · ξm′′−m′,l,l′,k, (36)

with

ξm′′−m′,l,l′,k :=

K−1
∑

k′,k′′=0

φk,k′(l′)φ∗k,k′′(l′ +
(

m′′ −m′
)

B) · e−j 2π

K
[k′l−k′′(l+(m′′−m′)B)]. (37)
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By further substituting the definition of φk,k′(l) into (37) according to (3), we obtain

ξm′′−m′,l,l′,k

=

K−1
∑

k′,k′′=0





Lw−1
∑

p′=0

wA(p
′)wS(p

′ + l′)ej
2π

K
k′(p′+l′)e−j 2π

K
kp′



 e−j 2π

K
[k′l−k′′(l+(m′′−m′)B)]

·

[

Lw−1
∑

p′′=0

wA(p
′′)wS(p

′′ + l′ +
(

m′′ −m′
)

B)e−j 2π

K
k′′(p′′+l′+(m′′−m′)B)ej

2π

K
kp′′

]

(38)

=

Lw−1
∑

p′′=0

wA(p
′′)wS(p

′′ + l′ +
(

m′′ −m′
)

B)ej
2π

K
kp′′

Lw−1
∑

p′=0

wA(p
′)wS(p

′ + l′)e−j 2π

K
kp′

ψp′,p′′,l,l′ (39)

with

ψp′,p′′,l,l′ :=

[

K−1
∑

k′=0

ej
2π

K
k′(p′+l′−l)

][

K−1
∑

k′′=0

e−j 2π

K
k′′(p′′+l′−l)

]

. (40)

Considering the sum orthogonality

1

K

K−1
∑

k=0

ej
2π

K
kµ =

∞
∑

ν=−∞

δ (µ− νK) for µ ∈ Z,K ∈ N, (41)

the term ψp′,p′′,l,l′ can be expressed as

ψp′,p′′,l,l′ = K2

[

∞
∑

ν′=−∞

δ
(

p′ + l′ − l − ν ′K
)

][

∞
∑

ν′′=−∞

δ
(

p′′ + l′ − l − ν ′′K
)

]

. (42)

Having in mind the identity

δ (l − µ) δ
(

l − µ′
)

= δ (l − µ) δ
(

µ− µ′
)

for l, µ, µ′ ∈ Z, (43)

we may simplify ψp′,p′′,l,l′ further by

ψp′,p′′,l,l′ = K2

[

∞
∑

ν=−∞

δ
(

p′ + l′ − l − ν ′K
)

][

∞
∑

=−∞

δ
(

p′′ − p′ −
(

ν ′′ − ν ′
)

K
)

]

. (44)

Since the difference p′′− p′ lies within the interval [−Lw + 1, Lw − 1] and K > Lw holds, the argument

of the second DIRAC delta function in (44) may become zero only for ν ′′ = ν ′. For that reason

ψp′,p′′,l,l′ = K2
∞
∑

ν′=−∞

δ
(

p′ + l′ − l − ν ′K
)

δ
(

p′′ − p′
)

(45)
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holds. By substituting (45) into (39), it follows that

ξm′′−m′,l,l′,k

= K2
∞
∑

ν′=−∞

Lw−1
∑

p′=0

wA(p
′)wS(p

′ + l′)δ
(

p′ + l′ − l − ν ′K
)

·

Lw−1
∑

p′′=0

wA(p
′′)wS(p

′′ + l′ +
(

m′′ −m′
)

B)δ
(

p′′ − p′
)

e−j 2π

K
k(p′−p′′) (46)

= K2
∞
∑

ν′=−∞

Lw−1
∑

p′=0

w2
A(p

′)wS(p
′ + l′)δ

(

p′ + l′ − l − ν ′K
)

wS(p
′ + l′ +

(

m′′ −m′
)

B) (47)

= K2
∞
∑

ν′=−∞

w2
A(−l

′ + l + ν ′K)wS(l + ν ′K)wS(l + ν ′K +
(

m′′ −m′
)

B), (48)

From this expression it can be seen that ξm′′−m′,l,l′,k does not depend on k. Since for l ∈ [−Lw + 1, Lw − 1]

the equality wS(l + ν ′K) = 0 ∀ν ′ 6= 0 holds, we have

ξm′′−m′,l,l′,k = K2w2
A(−l

′ + l)wS(l)wS(l +
(

m′′ −m′
)

B). (49)

By substituting (49) into (36), we obtain

E

[

∣

∣

∣
S̆(m,k)

∣

∣

∣

2
]

= σ2xσ
2
h · CN (50)

with

CN := K2
LH
∑

m′,m′′=−LH,ℓ

Lw−1
∑

l=0

wA(l)wS(l)wA(l +
(

m′′ −m′
)

B)wS(l +
(

m′′ −m′
)

B)

·

Lw−1
∑

l′=−Lw+1

χh

(

m′B − l′
)

e
−

2(m′B−l′)
τh w2

A(−l
′ + l). (51)

b) Right hand side of (6): The expression on the right hand side of (6) may be simplified using

(31) and (34) to be

E

[

CP ·

LH
∑

m′=0

∣

∣

∣
X̆(m−m′, k)

∣

∣

∣

2 ∣
∣

∣
h̆k,k(m

′)
∣

∣

∣

2
]

= CP

LH
∑

m′=0

E

[

∣

∣

∣
X̆(m−m′, k)

∣

∣

∣

2
]

E

[

∣

∣

∣
h̆k,k(m

′)
∣

∣

∣

2
]

(52)

= CP

LH
∑

m′=0

(

σ2x

Lw−1
∑

l=0

w2
A(l)

)(

σ2h

Lw−1
∑

l′=−Lw+1

∣

∣φk,k(l
′)
∣

∣

2
χh

(

m′B − l′
)

e
−

2(m′B−l′)
τh

)

(53)

= CP · σ2xσ
2
h · CD. (54)
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Employing (3) for k=k′ and (25), CD may be expressed as

CD :=

[

LH
∑

m′=0

Lw−1
∑

l′=−Lw+1

w2(−l′)χh

(

m′B − l′
)

e
−

2(m′B−l′)
τh

](

Lw−1
∑

l=0

w2
A(l)

)

. (55)

The desired constant CP is finally obtained from comparing expressions (54) and (50) to be

CP =
CN

CD
. (56)

From (51) and (55), it can be seen that the constant CP only depends on the parameters employed for

feature extraction and on the reverberation time.

The power compensation constant obtained for the parameter values according to the ETSI Standard

Front-End [7] are given in Fig. 1 for different reverberation times. The required AIR parameters for

different reverberation times resulting from the choice ǫh = 10−3 are listed in Tab. I It can be seen that

T60 [ms]

C
P

0 200 400 600 800 1000

7.8

8

8.2

Fig. 1. Power compensation constant for different reverberation times.

the constant depends only on the parameters for the extraction, i.e. the analysis and synthesis windows,

the number of frequency bins etc., and on the reverberation time and that its value is about 8 for a large

range of practically relevant reverberation times.

In practice, it is reasonable to precompute the power compensation constant for a set of predefined

reverberation times prior to applying any of the observation models, e.g., to feature enhancement and

successive ASR, and choose CP based on an estimate of the reverberation time.

TABLE I

AIR PARAMETERS FOR DIFFERENT REVERBERATION TIMES RESULTING FROM THE CHOICE ǫh = 10
−3 .

T̂60 250ms 350ms 450ms 550ms 650ms

AIR length L̂h 1000 1400 1800 2200 2600

LMPSC length L̂H 14 19 24 29 34
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