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Abstract
In this contribution we investigate the effectiveness of

BAYESIAN feature enhancement (BFE) on a medium-sized
recognition task containing real-world recordings of noisy re-
verberant speech. BFE employs a very coarse model of the
acoustic impulse response (AIR) from the source to the micro-
phone, which has been shown to be effective if the speech to be
recognized has been generated by artificially convolving non-
reverberant speech with a constant AIR. Here we demonstrate
that the model is also appropriate to be used in feature enhance-
ment of true recordings of noisy reverberant speech. On the
Multi-Channel Wall Street Journal Audio Visual corpus (MC-
WSJ-AV) the word error rate is cut in half to 41.9% compared
to the ETSI Standard Front-End using as input the signal of a
single distant microphone with a single recognition pass.
Index Terms: bayesian feature enhancement, dereverberation,
denoising

1. Introduction
The automatic recognition of reverberant speech is currently a
“hot” topic, as is evidenced by the tremendous increase of publi-
cations on this issue in journals and at international conferences
in the last years [1]. However, most of the publications consider
small recognition tasks and artificially reverberated data.

While this constraint is valid for an initial treatment of the
topic, a comprehensive and meaningful investigation must ad-
dress the issue of how the proposed approaches scale to larger
tasks and how they behave on true recordings from a reverber-
ant environment, where the AIR is no longer constant and where
additive noise is typically present, in addition to reverberation.

Approaches to robust speech recognition can be classified
into front-end and back-end methods. Back-end methods mod-
ify the acoustic models or the decoder to account for the effect
of reverberation. It is likely that the computational complex-
ity of these techniques rises as the size of the acoustic model
and the recognition task increases. The complexity of front-
end techniques, on the other hand, tends to be independent of
the size of the recognition task. In front-end techniques, rever-
beration can be either addressed at the signal or at the feature
level. The computation of MEL frequency cepstral coefficients
(MFCCs) or similar features incorporates both a decimation in
time (the framing) and in frequency (by the MEL filter bank).
As a consequence, to describe the impact of reverberation, the
AIR need not be known but rather a representation of it in the
feature domain, which may be easier to obtain.

For these reasons we decided in prior work to treat re-
verberation in the feature domain. In [2] we have developed
a BAYESIAN feature enhancement approach for reverberant

speech recognition and obtained good recognition results on
the AURORA5 database, a connected digits recognition task,
where the utterances of the database were created by convolv-
ing the corresponding clean utterances with artificial AIRs [3].

However, so far we have never verified our claim, that with
feature based methods high recognition accuracy can also be
obtained on real recordings of noisy reverberant speech. This
paper is going to fill this gap and investigates the performance
of BFE on the MC-WSJ-AV corpus, a 5000-word recognition
task, recorded in a meeting room environment [4].

The paper is organized as follows. In the next section we
describe the impact of noise and reverberation on the logarith-
mic MEL power spectral coefficients (LMPSCs), an intermedi-
ate representation during the computation of the MFCCs, fol-
lowed by a brief introduction to the BFE approach for the ASR
of noisy reverberant speech in Sec. 3. Next, we explain our fea-
ture domain model of the AIR in Sec. 4. In the experimental
section we first describe the MC-WSJ-AV corpus followed by a
number of recognition experiments, which demonstrate the ef-
fectiveness of BFE on a medium-sized vocabulary task of true
recordings from a reverberant environment.

2. Signal Model
A system theoretic model of reverberation in the time domain is
the convolution of the source (clean) speech signalx(l) with the
acoustic impulse responseh(l) from the source to the sensor.
As a distant microphone will also capture additive noisen(l),
the signal at the microphoney(l) can be expressed as

y(l) =

Lh−1
∑

p=0

h(p)x(l − p) + n(l), (1)

where Lh denotes the length of the AIR. When the short-
time discrete Fourier transform (STDFT) is applied to (1), the
following relationship results among the STDFTs̃Y (m, f),
X̃(m, f) and Ñ(m, f) of the noisy reverberant speech, the
clean speech and the noise signal, respectively:

Ỹ (m, f) ≈

LH
∑

m′=0

X̃(m−m′, f)Hm′,f + Ñ(m, f), (2)

where the number of summands in the convolution is given by

LH =

⌊

Lh + Lw − 2

B

⌋

, (3)

with Lw denoting the window length,B being the frame shift
and ⌊·⌋ denoting the floor function. In (2),m indicates the
frame index, whilef is the frequency bin index.Hm,f is a fre-
quency domain representation of the windowed AIR. Note that
the convolution in (1) results in a convolution in the STDFT



domain, however now w.r.t. the frame indexm.
After the power spectrum computation, application of the

MEL filter bank and transformation into the logarithmic do-
main, the relationship between nonreverberant, noise, and noisy
reverberant features becomes highly nonlinear [2]:

ym = ln

(

LH
∑

m′=0

exm−m′+h
m′ + enm

)

+ vm

= f
(

xm−LH :m,h0:LH
,nm

)

+ vm. (4)

Here,ym, xm andnm are the LMPSC feature vectors of the
noisy reverberant speech, the nonreverberant speech and of the
noise signal, respectively, at framem. hm is an approximate
representation of the AIR in the logarithmic MEL spectral do-
main. Note that the nonlinearityf(·) has to be understood to be
applied element-wise to the vectors and that

xm−LH :m := xm−LH
, . . . ,xm (5)

h0:LH
:= h0, ...,hLH

(6)

denote the sequence of LMPSC feature vectors of clean speech
and the components of the representation of the AIR, respec-
tively.

The vectorvm captures all errors resulting from the various
approximations that had to be introduced to arrive at (4). In
[2, 5] we have proposed to modelvm as a realization of a white
GAUSSIAN process whose mean vector and covariance matrix
can be estimated by comparing the observed LMPSC feature
vectors with those predicted by the model.

3. BAYESIAN Feature Enhancement
In this section, we will briefly explain the idea of BAYESIAN

feature enhancement. For a detailed treatment the reader is re-
ferred to [2, 6].

Assuming we are given a sequence ofM jointly reverberant
and noisy feature vectors

y1:M := y1, . . . ,yM , (7)

the goal is to estimate the sequence of the corresponding clean
feature vectorsx1:M . We assume that we can afford a latency
of LC − 1 frames to be able to exploit the knowledge of the
sequencey1:m+LC−1 for the estimation ofxm. The estimation
can greatly benefit from the use of future observations, as will
be seen in the experimental results.

The estimation of the clean feature vectors is formulated
as a trajectory tracking problem, where all involved kinds of
acoustic feature vector trajectories are assumed to be realiza-
tions of vector valued stochastic processes. For the estimation,
we introduce the state vector

zm :=
(

(χm)T , (nm)T
)T

, (8)

whereχm is a vector consisting of the clean LMPSC vector
at time instantm andLC − 1 previous clean LMPSC vectors
according to

χm :=
(

(xm)T , . . . , (xm−LC+1)
T
)T

. (9)

The goal of BAYESIAN feature enhancement is to obtain
the posterior probability density function (PDF)p (zm|y1:m).
From this we obtain the minimum mean square error (MMSE)
estimatex̂m−LC+1 = E [xm−LC+1|y1:m], with E [·] denot-
ing the expected value, to which a Discrete Cosine Transform
(DCT) is applied before being forwarded to the decoder as
cleaned-up MFCC feature vector.

The posterior PDFp (zm|y1:m) may be theoretically com-

puted recursively by carrying out BAYESIAN inference, i.e., per-
forming in turn the so-called prediction

p (zm|y1:m−1)

=

∫

p (zm| zm−1,y1:m−1) p (zm−1|y1:m−1) dzm−1

(10)

and the update step

p (zm|y1:m) ∝ p (ym| zm,y1:m−1) p (zm|y1:m−1) . (11)

While the prediction step requires the knowledge of the predic-
tive PDFp (zm| zm−1,y1:m−1), the update step asks for the
knowledge of the observation PDFp (ym| zm,y1:m−1).

For the predictive PDF we employ a switching linear dy-
namic model (SLDM) to capture the dynamics of speech fea-
tures, and a GAUSSIAN PDF as a priori model of noise. A
SLDM consists ofI interacting sub-models, where thei-th sub-
model, indicated by the regime variableζm, is described by

p (xm|xm−1, ζm = i) (12)

≈

{

N
(

xm;µ
x,i,Σx,i

)

for m = 1

N (xm;Aixm−1 + bi,Vi) for m > 1.
(13)

In (13),N
(

·;µ
x,i,Σx,i

)

denotes a GAUSSIAN PDF with mean
vectorµ

x,i and covariance matrixΣx,i. Further,Ai, bi and
Vi denote the state transition matrix, the bias compensation
vector and the linear prediction error covariance matrix, respec-
tively.

The observation PDFp (ym| zm,y1:m−1) is derived from
the relation (4). This requireshm, a representation of the AIR in
the LMPSC domain, which will be described in the next section.

Note that both the a priori model of speech and the obser-
vation mappingf(·) are nonlinear. As a consequence, only an
approximate recursive BAYESIAN inference of the posterior is
computationally feasible. We employed the Interacting Multi-
ple Model algorithm with a bank of iterated extended KALMAN

filters for this purpose [7].

4. Feature Domain Model of AIR
We model the AIR as a realization of a zero-mean white Gaus-
sian processξ(l) of finite length and unit power with an expo-
nentially decaying envelope, a model proposed in [8]:

h(l) = σh · u(l) · ξ(l) · e
−

l

τh . (14)

Here,u(l) is an indicator function constraining the length of the
AIR to Lh: u(l) = 1 for 0 ≤ l < Lh andu(l) = 0 else. This
model has two parameters. The first,σh, controls the energy
Eh of the AIR, since

Eh := E

[

Lh−1
∑

l=0

h2(l)

]

= σ2
h
1− e−2Lh/τh

1− e−2/τh
. (15)

The second parameter is related to the room reverberation time
T60 through

τh =
T60

3 ln (10) · TA

(16)

with TA denoting the sampling interval. Based on (14) a rea-
sonable lengthLh of the AIR model may be determined in de-
pendence onτh by

Lh = Lh (τh) =
⌈

−
τh
2

ln (ǫh)
⌉

, (17)

which is obtained by minimizing the AIR length under the con-
straint that the relative energy of the neglected part of the AIR



is smaller than some prespecifiedǫh. In (17) ⌈·⌉ denotes the
ceiling function.

The advantage of using this model is that is has only two
parameters, which can be estimated more easily than the com-
plete AIR. An estimate ofτh can be computed from an estimate
of the reverberation time by (16), an estimate ofσh can be ob-
tained from an estimate ofEh and (15).

On databases containing artificially reverberated data, the
estimation ofEh is usually superfluous since the AIR is often
normalized to unit energy. However, this does in general not
hold for true recordings of reverberant speech. In that case, the
conditionEh = 1 can be assured to approximately hold af-
ter an appropriate normalization of the test data, which can be
derived as follows: First, it is assumed that the average power
of reverberant speech,σ2

s , is approximately related to that of
non-reverberant speech,σ2

x, throughσ2
s ≈ Ehσ

2
x. Second, it is

assumed that the average power of the non-reverberant speech
of the test data,σ2

x,TEST, is equal to that of the training data,
σ2
x,TRAIN. To assureEh = 1, the noisy reverberant test data

is multiplied by
√

σ2
s,TEST/σ

2
x,TRAIN before feature enhance-

ment, where the average power of reverberant speech of the
test data,σ2

s,TEST, can be computed from the average power
of the noisy reverberant speech in the test data,σ2

y,TEST, and
the average power of the noise in the test data,σ2

n,TEST, by
σ2
s,TEST ≈ σ2

y,TEST − σ2
n,TEST and by using a voice activity

detector.
In Monte Carlo simulations it was observed that the distri-

butions of logarithmic MEL power spectral representation of the
AIR h0:LH

, Eq. (6), under the stochastic AIR model (14) can be
well approximated by GAUSSIANs. As we have previously done
in [2], we replace the usually unknown representationh̄0:LH

in
the observation mapping (4) by the meansµ

h̄0
, . . . ,µ

h̄LH

of
these GAUSSIANs.

5. Experimental Results
5.1. The MC-WSJ-AV Corpus

The Multi-Channel Wall Street Journal Audio Visual corpus
(MC-WSJ-AV) is a collection of read Wall Street Journal (WSJ)
sentences taken from the development and evaluation sets of
the WSJCAM0 database, recorded in a number of instrumented
meeting rooms constructed within the framework of the Eu-
ropean AMI (Augmented Multi-Party Interaction) project [4].
Sentences are read according to three different scenarios, where
the experiments reported here have been conducted on the ”sin-
gle stationary speaker” subset. For this condition the speak-
ers read sentences from six positions within the meeting room
— four seated around a table, one standing at the whiteboard,
and one standing at the presentation screen. Data have been
recorded simultaneously by a headset microphone, a lapel mi-
crophone and two 8-element circular microphone arrays posi-
tioned on the table. The test set used in the experiments re-
ported here are the EVAL1 sentences recorded at the University
of Edinburgh, consisting of 189 sentences, totaling 3093 words
and having a total length of 21 minutes. The sampling rate is
16 kHz.

The signal-to-noise ratio at the input of a microphone of
the circular array is on average about15 − 20 dB and the room
reverberation time was estimated to700ms [4] and380ms [9].

Several authors have published recognition results on this
database [4, 9]. They mostly experimented with microphone
array techniques to reduce the impact of reverberation.

5.2. Baseline Experiments

Acoustic model training has been carried out with the WSJ-
CAM0 training set using the HTK system. The acoustic model
consisted of approximately 9000 tied-state triphones with three
emitting states per triphone and 10 mixture components per
state. The 39-element feature vector comprised of 13 MFCCs,
including the0th cepstral coefficient, with their first and second-
order derivatives, was computed according to the ETSI Stan-
dard Front-End [10], with the modification that power instead
of magnitude spectrum was employed. The language model is
the standard MIT-Lincoln Labs 5k Wall Street Journal bigram
language model.

Unlike many artificially reverberated databases, here the
energy of the AIR is not normalized to unity. As a result, we
normalized the test data as described in the previous section.

Table 1 displays baseline recognition results using standard
feature extraction techniques: The ETSI Standard Front-End
(SFE) [10], followed by cepstral mean normalization (CMN) on
the full 39-dimensional feature vector, and the ETSI Advanced
Front-End (AFE) [11]. The results obtained on the headset,
lapel and single distant microphone (SDM, we used microphone
1 of array 1 for our tests) are comparable to those published
in [4]. Note that a second recognition pass employing unsu-
pervised channel adaptation by a single Constrained Maximum
Likelihood Linear Regression (CMLLR) transformation matrix
[12], trained on the transcription provided by the first recogni-
tion pass, did only deliver a relatively small improvement.

WER [%]
Channel Approach no adapt. CMLLR

Headset SFE + CMN 15.3 14.7
Lapel SFE + CMN 23.5 18.9

SDM SFE + CMN 82.5 73.4
SDM AFE 74.4 66.2

Table 1: Baseline recognition results on MC-WSJ-AV

5.3. Bayesian Feature Enhancement

In this section we present the performance of the BFE approach
for ASR of noisy reverberant speech, using the SDM data, in
terms of word error rates achieved. The processing steps are as
follows: First, 23-component LMPSC feature vectors are com-
puted according to the slightly modified ETSI SFE. Then BFE
is applied and the enhanced features are transformed by DCT to
13 static MFCCs. Next, velocity and acceleration features are
appended and CMN is applied to the resulting 39-dimensional
feature vector, which is finally forwarded to the decoder.

In a first set of experiments the settings of the parameters of
the AIR model of Sec. 4 are determined. For these experiments
we used a reduced complexity system with onlyI = 4 dynamic
models within the SLDM, the a priori model of speech. Further,
the latency parameter was set toLC = 4.

After scaling the test data to unit AIR energy as described
in the previous section, the first parameter of the AIR model,
the energy parameterσh, can be readily computed from (15).

The decay constant has to be set according to the room re-
verberation time as shown in (17). The AIR model is, how-
ever, only a crude approximation to the true AIR. Therefore,
the choice ofT60 optimal with respect to the recognition rate
may be different from the true reverberation time of the room



the data had been recorded in. We therefore ran a set of recogni-
tion experiments to determine the dependence of the word error
rate on the assumed room reverberation time, see Table 2.

The results reveal that the word error rate (WER) is not very
sensitive to the choice of room reverberation time: while the
lowest WER is obtained for̂T60 = 600ms, the error rate in-
creases only little ifT̂60 is reduced or increased by50ms. An
accuracy within±50ms is what can be expected by state-of-
the-art algorithms for the blind estimation of the room rever-
beration time. From the obtained results we concluded to set
T̂60 = 600ms for the following experiments. The value is
needed in (17) for the determination ofLh to be used for the
computation of the logarithmic MEL power spectral representa-
tion of the AIR.

T̂60 [ms] WER [%]

400 52.6
450 48.8
500 46.1
550 45.5
600 45.3
650 46.6
700 49.4

Table 2: Word error rates achieved with BFE of SDM input as
a function of assumed room reverberation timeT̂60

Having set the parameters of the AIR model we are going
to present the results of a full-fledged system, incorporating a
SLDM with I = 14 dynamic models. Note that the computa-
tional complexity of BFE is roughly proportional to the number
of dynamic modelsI.

Latency WER [%]
LC no adapt. CMLLR

1 74.3 65.9
2 51.4 46.8
3 44.6 41.9
4 43.0 40.5
5 41.9 40.5
6 42.2 41.1

Table 3: Word error rates achieved with BFE of SDM input as
a function of latency parameterLC

Table 3 presents word error rates as a function of the latency
parameterLC . According to Sec. 3,LC is the number of suc-
cessive speech feature vectors present in the state variableχm

of the KALMAN filters. Note that the computational complex-
ity of the BFE is roughly proportional toLC . The lowest WER
is obtained withLC = 5, while the error rate increases when
decreasingLC . This shows the benefit of using future observa-
tions for the enhancement. The obtained WER of 41.9% is to
our knowledge the lowest WER achieved on this database with
a SDM input and one-pass recognition. Note, that no speaker
adaptation has been carried out so far.

The real time factor for the feature enhancement in this
setup was1.4 on an Intel Core i7/3.20GHz CPU using 3 cores.
Note that the computational complexity is independent of the
acoustic model and the vocabulary.

Using the recognized word sequence to estimate a CMLLR
matrix to be used for channel adaptation in a second recognition

pass improved the word error rate by only a few percent. The
improvement is probably due to the fact that the poor modeling
of the direct path and early reflections in the model (14) is in
part compensated by the CMLLR adaptation.

6. Conclusions
In this contribution we have presented recognition results for
automatic recognition of single distant microphone noisy rever-
berant speech using our previously proposed BAYESIAN feature
enhancement approach. For the first time, recognition experi-
ments have been conducted on true recordings of noisy rever-
berant speech rather than on artificially reverberated data. On
the MC-WSJ-AV task, a 5000-word recognition task, the word
error rate could be roughly cut in half. This is comparable to our
earlier results obtained on an artificially reverberated version of
the WSJ 5k test set [5]. There, also a factor of two in error rate
reduction could be achieved, however at lower absolute values
of the error rate.

We have further shown that BFE can be combined favorably
with CMLLR: channel adaptation after feature enhancement de-
livers a further small improvement in word error rate.
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