

Computer Science, Electrical Engineering and Mathematics

Prof. Dr.-Ing. Reinhold Häb-Umbach

Microphone Array Position Self-Calibration from Reverberant Speech Input

Florian Jacob, Joerg Schmalenstroeer and Reinhold Haeb-Umbach

University of Paderborn, Germany {jacob, schmalen, haeb}@nt.uni-paderborn.de http://nt.uni-paderborn.de

Introduction

 The geometry of an acoustic sensor network is required for many signal processing applications

Comparison

- Previous cost function: Local minima, that correspond to wrong sensor orientations
- Automatic sensor position estimation preferable to error-prone manual measurement process
- Existing approaches often use artificial calibration signals or special hardware to achieve high positioning accuracy
- Goal: Relative geometry calibration based on reverberant speech input

Problem statement (2D)

- Each sensor node consists of a microphone array
- Array configuration within sensor node known
- Measurements: Direction of Arrival (DoA) from each sensor node
- Unknown parameters:
 - Sensor positions: $[x_i^S, y_i^S]$
 - Sensor orientations: Θ_j
 - Speaker positions: $[x_i^P, y_i^P]$

 Δx_{ij}

 Δy_{ij}

 Proposed cost function: Avoids local minima, that correspond to wrong sensor orientations

Random Sample Consensus (RANSAC)

- Precision of automatic geometry calibration highly depends on the quality of the DoA estimates
- Calibration embedded into RANSAC for outlier rejection

Proposed cost function

\$\phi_{ij}\$: DoA of *i*-th speaker
 position measured by *j*-th
 sensor:

 $\mathbf{V}_{ij} = \left[\cos\left(\phi_{ij}\right)\sin\left(\phi_{ij}\right)
ight]^{T}$

DoA vector predicted by current geometry estimates:

 $\tilde{\boldsymbol{v}}_{ij} = \begin{bmatrix} \cos\left(\tilde{\phi}_{ij} - \widehat{\Theta}_{j}\right) \\ \sin\left(\tilde{\phi}_{ij} - \widehat{\Theta}_{j}\right) \end{bmatrix} = \underbrace{\begin{bmatrix} \cos\left(\widehat{\Theta}_{j}\right) & \sin\left(\widehat{\Theta}_{j}\right) \\ -\sin\left(\widehat{\Theta}_{j}\right) & \cos\left(\widehat{\Theta}_{j}\right) \end{bmatrix}}_{\boldsymbol{R}(-\widehat{\Theta}_{j})} \underbrace{\frac{1}{\sqrt{\widehat{\Delta x}_{ij}^{2} + \widehat{\Delta y}_{ij}^{2}}}_{1/|\widehat{\boldsymbol{v}}_{ij}|} \underbrace{\begin{bmatrix}\widehat{\Delta x}_{ij} \\ \widehat{\Delta y}_{ij} \end{bmatrix}}_{\widehat{\boldsymbol{v}}_{ij}}$

 y_i^S

• Cost function:

Iterative cost function minimization using Newton's method

Experiments

Room geometry:

- Simulated audio database, based on image method
- Reverberation times

Previous cost function

• Geometric relation between sensor and observation: $\tan\left(\widehat{\Theta}_{j} + \phi_{ij}\right) = \frac{\sin\left(\widehat{\Theta}_{j} + \phi_{ij}\right)}{\cos\left(\widehat{\Theta}_{j} + \phi_{ij}\right)} = \frac{\widehat{\Delta y}_{ij}}{\widehat{\Delta x}_{ij}}$

Resulting cost function

$$J_{S} = \sum_{i=1}^{N} \sum_{j=1}^{K} \underbrace{\left\{ |\widehat{\boldsymbol{v}}_{ij}| \sin\left(\triangleleft \left(\boldsymbol{v}_{ij}, \ \widehat{\boldsymbol{v}}_{ij}\right) \right) \right\}^{2}}_{f_{ij}}$$

from 0 ms up to 500 ms

the existing cost function and the proposed cost function for different reverberation times.

Conclusions

New formulation avoids solutions that correspond to mirrored sensor orientations
RANSAC increases robustness against reverberation
Mean positioning error smaller than 0.25 m for reverberation times up to 500 ms

International Workshop on Acoustic Signal Enhancement 2012, Aachen

Work supported by DFG under contract no. Ha3455/7-1