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ABSTRACT

In this paper we propose an approach to retrieve the geome-

try of an acoustic sensor network consisting of spatially dis-

tributed microphone arrays from unconstrained speech input.

The calibration relies on Direction of Arrival (DoA) measure-

ments which do not require a clock synchronization among

the sensor nodes. The calibration problem is formulated as a

cost function optimization task, which minimizes the squared

differences between measured and predicted observations and

additionally avoids the existence of minima that correspond

to mirrored versions of the actual sensor orientations. Further,

outlier measurements caused by reverberation are mitigated

by a Random Sample Consensus (RANSAC) approach. The

experimental results show a mean positioning error of at most

25 cm even in highly reverberant environments.

Index Terms— Unsupervised, geometry calibration, mi-

crophone arrays, position self-calibration

1. INTRODUCTION

With the availability of inexpensive microphone hardware,

ever more devices will be equipped with acoustic sensors.

This allows for the possibility to form ad-hoc microphone

networks by the sensors finding themselves in the same enclo-

sure. In such scenarios the sensor placement will be unknown

and may even change over time, but many acoustic signal pro-

cessing applications, such as source localization and tracking,

require the position of the microphones to be known.

Since the manual measurement of the microphone posi-

tions is a tedious and error-prone task techniques have been

developed to automate this process. One possibility is to man-

ually measure only the pairwise distances between the sensors

and apply multi-dimensional scaling for recovering the posi-

tions [1]. Other authors have proposed a fully automatic spa-

tial calibration, either based on TDoA [2] or by time of arrival

(ToA) measurements [3]. They employed artificial calibration

signals, such as chirps, to achieve high positioning accuracy.

While ToA and TDoA measurements require a clock syn-

chronization among the sensor nodes, this is avoided by DoA-

based algorithms [4, 5]. The DoA can be estimated using

general cross correlation (GCC) approaches like GCC-PHAT

[6] or by beamforming methods [7]. For DoA estimation, a

sensor node must consist of a microphone array with known

(intra-array) geometry. Note that DoA-based algorithms can

only reveal the relative geometry and require an additional

distance information e.g. from a TDoA measurement.

Irrespective of which measurements are used, the posi-

tion self-calibration problem leads in general to a non-convex

cost function, which may suffer from many local minima,

such that gradient descent approaches often lead to unsatis-

factory results. If additional restrictions apply, simplified for-

mulations have been found. For example, in [8] it has been

assumed, that the source signal impinges on all sensors at

the same angle, resulting in the solution to reside in a low-

dimensional affine subspace, which can be found by Singular

Value Decomposition. Here, a DoA-based calibration is de-

veloped, which allows for arbitrary sensor configurations and

yet avoids the existence of minima corresponding to mirrored

version of the true sensor orientation, thus overcoming the de-

ficiencies of earlier formulations [9, 10].

To minimize the calibration effort it is further preferable

if the position self-calibration can be carried out with natural

sound events, such as speech, as it does not require loudspeak-

ers for the playback of the calibration signals. Using speech

in a reverberant enclosure, asks for measures to avoid the im-

pact of erroneous measurements due to speech being a non-

ideal probing signal and due to reverberation. In [10] we have

therefore proposed to embed the cost function optimization in

an outlier rejection scheme based on the RANSAC from [11].

Here we propose an improvedmethod for fusing the output of

different RANSACs to an overall geometry estimate.

The paper is organized as follows. In Section 2 we present

the new formulation of the cost function and compare it with

an earlier approach in Sec. 3. After giving an overview of the

complete calibration system and a description of the retrieval

of the final geometry estimate in Sec. 4, Section 5 presents the

experimental results, and we finish with some conclusions in

Sec. 6.

2. DEVELOPMENT OF A COST FUNCTION

We consider geometry calibration in 2-dimensional space and

assume that the sensor nodes deliver DoA estimates. Our



goal is to determine the position [xS
j , y

S
j ] and orientation Θj ,

j = 1, . . . ,K of the K sensor nodes. Without loss of gen-

erality the first sensor’s location is positioned at the origin of

the coordinate system ([xS
1 , y

S
1 ] = [0, 0]) with an orientation

along the x-axis (Θ1 = 0). This coordinate system will be

called “global coordinate system” in the following.

Further, the speaker positionsPi = [xP
i , y

P
i ], i = 1, . . . , N ,

are also unknown. All 3(K−1)+2N unknowns are gathered

in the vector

Ω = [xS
2 , y

S
2 ,Θ2, . . . , x

S
K , ySK ,ΘK , xP

1 , y
P
1 , . . . , x

P
N , yPN ].

These unknowns are to be determined from the K · N mea-

surements φij , 1 ≤ i ≤ N , 1 ≤ j ≤ K , where φij is the DoA

measured by sensor node j for the i-th speaker position, rel-

ative to the sensor’s own (local) coordinate system. At least

N ≥ 3(K−1)
K−2 independent observations are required to solve

the calibration problem.

Each DoA measurement φij can be expressed as a unit-

length direction vector

vij =
[
cos (φij) sin (φij)

]T
(1)

within the coordinate system of the respective sensor, pointing

to the observation. Here, (·)T denotes vector transposition.

The measurement will be compared with a prediction. Ac-

cording to Fig. 1, the DoA predicted by the assumed sensor

and source locations [xS
j , y

S
j ] and [xP

i , y
P
i ], respectively, is

given by

φ̃ij = atan

(
∆yij

∆xij

)

= atan

(

yPi − ySj

xP
i − xS

j

)

, (2)

where atan (·) is the four-quadrant extension of the arctan

function.
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Fig. 1. Geometric relation between microphone array and ob-

servation.

Note that the predicted DoA φ̃ij is defined in the global

coordinate system, whereas the measurement φij is made rel-

ative to the orientation Θj of the j-th sensor. A predicted

direction vector v̂ij within the coordinate system of the par-

ticular sensor is thus obtained by

v̂ij =




cos
(

φ̃ij −Θj

)

sin
(

φ̃ij −Θj

)



=




cos
(

atan
(

∆yij

∆xij

)

−Θj

)

sin
(

atan
(

∆yij

∆xij

)

−Θj

)



 (3)

which can be written as

v̂ij =

[
cos (Θj) sin (Θj)
− sin (Θj) cos (Θj)

]

︸ ︷︷ ︸

R(−Θj)

1√
∆x2

ij
+∆y2

ij
︸ ︷︷ ︸

1/|ṽij |

[
∆xij

∆yij

]

︸ ︷︷ ︸

ṽij

. (4)

Here, ṽij is the unnormalized direction vector from the po-

sition of sensor j to source position i. Eq. (4) describes the

normalization and the rotation of the vector ṽij from the lo-

cal coordinate system of the microphone array into the global

coordinate system by the rotation matrixR(−Θj).

Our goal is to determine the unknowns Ω such that v̂ij

is as close to vij as possible, for all i, j. Since these are

unit length direction vectors, an Euclidian distance measure

is, however, inappropriate. We therefore propose to use a co-

sine distance instead:

1− cos (∢ (vij , v̂ij)) = 1− vT
ij v̂ij = 1− vT

ijR(−Θj)
ṽij

|ṽij |
.

The distance is minimal if vij and v̂ij point in the same direc-

tion and maximal if they point in opposite directions.

Assuming that the DoA of speakers farer away from the

sensor can be estimated with a lower angle error than close-by

speakers, it is reasonable to employ a weighted distance mea-

sure, where the weight corresponds to the distance between

the speech source and the sensor. Thus the previous equation

is multiplied by |ṽij | to obtain
gij(Ω) := |ṽij |(1− cos (∢ (vij , v̂ij))). (5)

In summary, we want to seek position and orientation esti-

mates such that the cost function

Jc(Ω) =

N∑

i=1

K∑

j=1

(gij(Ω))
2

(6)

is minimized.

3. COMPARISON TO PREVIOUS APPROACH

To understand the benefits of the above objective function we

compare it to the approach of [10], which was an improved

version of a formulation originally published in [9].

Expressing the DoA measurement in the global coordi-

nate system, we obtain (see Fig. 1)

tan (Θj + φij) =
sin (Θj + φij)

cos (Θj + φij)
=

yPi − ySj

xP
i − xS

j

=
∆yij

∆xij

⇔ sin (Θj + φij)∆xij − cos (Θj + φij)∆yij
︸ ︷︷ ︸

fij(Ω)

= 0, (7)

which can be expressed as follows, after some elementary

mathematical manipulations,

fij(Ω) =

[
cos (φij)
sin (φij)

]T

︸ ︷︷ ︸

vT
ij

[
sin (Θj) − cos (Θj)
cos (Θj) sin (Θj)

]

︸ ︷︷ ︸

R(−Θj+
π
2
)

[
∆xij

∆yij

]

︸ ︷︷ ︸

ṽij

= vT
ijR(−Θj +

π

2
)ṽij . (8)

Using eq. (4) this can be written as

fij(Ω) = |ṽij |vT
ijR(

π

2
)v̂ij

= −|ṽij | sin (∢ (vij , v̂ij)) . (9)



The overall cost function to be minimized is then [10]

Js(Ω) =

N∑

i=1

K∑

j=1

(fij(Ω))
2
. (10)

Fig. 2 compares f2
ij(Ω) of eq. (9) with g2ij(Ω) of eq. (5).

While both achieve a minimum for vij = v̂ij the marked

difference is that within the range [−π, π], eq. (5) has a sin-

gle global minimum at vij = v̂ij , while eq. (9) has two more

minima at the boundaries of the interval, which correspond to

wrong orientation estimates of the sensors. For an iterative

optimization, eq. (5) is thus much more suitable as it avoids

being stuck in unwanted local minima.
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Fig. 2. Comparison of g2ij(Ω), eq. (5), with f2
ij(Ω), eq. (9),

as a function of the angle between vij and v̂ij .

Different techniques can be employed to optimize eq. (6)

and eq. (10). For the results presented here, we employed

the iterative root finding method by Newton, which may be

applied here, since the optimum is J(Ω̂) = 0.

4. SYSTEM OVERVIEW

The precision of the automatic geometry calibration highly de-

pends on the quality of the DoA estimates. This is particularly

an issue in highly reverberant enclosures. To reduce the im-

pact of erroneous DoA estimates, the position self-calibration

is embedded into a RANSAC algorithm for outlier rejection.

In a typical setup with a person speaking and walking in

the room for some time, many more DoA measurements are

obtained than the minimum number required to solve eq. (6)

via Newton’s root finding method. Multiple RANSACs, each

operating on a different sub-database (‘sub-database selec-

tion’), are therefore run in parallel, as is depicted in Fig. 3,

which shows a block diagram of the system.

In summary, an individual RANSAC consists of the fol-

lowing steps (for a detailed discussion see [10]): First, a sub-

set of observations is selected at random (‘Subset selection’).

These observations are used to obtain a first estimate of the

geometry parameters (‘Model calculation’). Subsequently, all

observations are scored against the current geometry estimate.

All observations which comply, up to small deviations, to the

geometry estimate form the new consensus set (‘Consensus

determination’). If the consensus set has increased compared

to the previous iteration, the estimation of the geometry pa-

rameters is repeated using the observations from the new con-

sensus set (‘Iterate’). If the size of the consensus set did not

increase compared to the previous iteration, the RANSAC

starts all over again and a new set of initial observations is se-

lected (‘Fail’). The RANSAC is terminated, if the consensus

set reaches a predefined amount of observations (‘Success’).

An obvious approach to combine the results of the indi-

vidual RANSACs to a common geometry would be the cal-

culation of the median or mean of each parameter in Ω. Su-

perior results, however, are obtained if complete geometries

rather than individual position estimates are reconciled. To

this end we randomly select a reference geometry out of the

RANSACs results and apply the rigid body transformations

from [12] to the other geometries to match them with the ref-

erence geometry. Afterwards we compute the median of the

matched geometries.
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Fig. 3. Block diagram of the system.

5. EXPERIMENTAL RESULTS

In order to compare the performance of our purposed algo-

rithm to the approach of our earlier publication [10] we used

the same audio database as there in a first set of experiments.

It contains recordings for 4 microphone arrays with 2 micro-

phones per array at an inter-microphone distance of 0.05m,

within a room of size 3.5m × 4m. The audio data for re-

verberation times T60 from 50ms to 450ms has been com-

puted using the image method. For each reverberation time a

separate trajectory of 90 seconds length was simulated, corre-

sponding to a speaker walks through the room while continu-

ously speaking.

The accuracy the calibration algorithm is quantified by the

“mean position error” (MPE), which is the average distance

between the real and the estimated positions of the sensors.

To obtain absolute geometry estimates we match the calibra-

tion results with the actual geometry before computing the

MPEs. Tab. 1 compares the MPEs obtained with the formu-

lations of a cost function according to eq. (10) (Js) of our

previous publication (Baseline) with the purposed approach

(Jc) from eq. (6).
X
X
X
X
X
X
X
X
X
X

Method

T60 [ms]
50 100 150 200 250 300 350 400 450

Js (from [10]) 0.05 0.14 0.16 0.49 0.74 0.50 0.69 0.96 0.36

Jc (proposed) 0.05 0.09 0.10 0.16 0.15 0.48 0.23 0.28 0.29

Table 1. Comparison of the mean position errors between the

approach from [10] and the proposed method.

The results indicate a consistent improvement by the new

formulation, but the MPE does not monotonically increase

with T60, as one could have expected. This is an artefact of

the database and can be explained by the fact that different

speaker trajectories were used for each reverberation time.

To better compare the MPEs at different reverberation



times the subsequent investigations are carried out on a new

database, where the same speaker trajectory was used for all

4.0m

3
.
5
m

Fig. 4. Sensor place-

ment (red dots).

reverberation times. The size of the

room and the microphone arrays are

the same as before. The placement

of the sensors within the new sce-

nario is shown in Fig. 4. Addition-

ally we increased the duration of the

recordings to 6 minutes. We esti-

mated the DoA values every 8ms
using an acoustic beamformer from

[7], so we end up with 45000 observations per sensor. During
the preselection phase of each of the 64 RANSACs we chose

a sub-database of 450 observations to limit the computational

complexity.

Fig. 5 shows the MPE of the earlier cost function (Js)

and the proposed cost function (Jc) for different reverberation

times. The color of the bars indicate the histogram of the in-

dividual RANSAC results, where lighter colors represent less

frequent and darker colors more frequent MPEs. The black

and cyan boxes at each bar represent the error of the geome-

try obtained from the different fusion techniques. Using the

rigid body transformation technique (cyan) leads to a moder-

ate reduction of the total error compared to the simple median

operation (black).
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Fig. 5. Comparison of the mean positioning error (MPE) be-

tween the existing cost function (Js) and the purposed cost

function (Jc) for different reverberation times.

Comparing the results after the fusion step, we can state

that the proposed cost function clearly outperforms the ex-

isting version, except for the very low reverberation times

smaller than 100ms. Additionally, the plot shows that the

MPEs of Jc vary less than those of Js.

In case of very low reverberation, i.e., up to 50ms, it
is possible to obtain geometry estimates without applying a

RANSAC, but for higher reverberation times Newton’s root

finding method failed nearly for a hundred percent without a

RANSAC.

6. CONCLUSIONS

We have presented a new formulation of the geometry calibra-

tion problem of distributed microphone arrays employing a

cost function that avoids solutions that correspond to mirrored

(wrong) sensor orientations. This cost function minimizes the

squared difference between the observed and the predicted

DoA. Additionally, we used the RANSAC to increase the ro-

bustness against reverberation. Multiple RANSACs were run

in parallel on different subsets of the database and a rigid

body transformation was employed to fuse the results. Over-

all a mean positioning error was obtained, which was at most

0.25m for reverberation times up to 500ms.
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