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ABSTRACT

In this paper we present a novel noise power spectral density

tracking algorithm and its use in single-channel speech en-

hancement. It has the unique feature that it is able to track

the noise statistics even if speech is dominant in a given time-

frequency bin. As a consequence it can follow non-stationary

noise superposed by speech, even in the critical case of rising

noise power. The algorithm requires an initial estimate of the

power spectrum of speech and is thus meant to be used as a

postprocessor to a first speech enhancement stage. An exper-

imental comparison with a state-of-the-art noise tracking al-

gorithm demonstrates lower estimation errors under low SNR

conditions and smaller fluctuations of the estimated values,

resulting in improved speech quality as measured by PESQ

scores.

Index Terms— Noise power estimation, MAP parameter

estimation, speech enhancement

1. INTRODUCTION

The noise power spectral density (PSD) estimation algorithm

is a key component of any speech enhancement system, as the

achievable quality of the enhanced speech critically depends

on it. When the noise is non-stationary, it is not sufficient

to update the noise PSD in speech absence periods only —

the noise PSD needs to be tracked even during speech ac-

tivity. Several algorithms have been proposed for this, such

as the minimum statistics (MS) algorithm, the minima con-

trolled recursive averaging (MCRA) algorithm and its im-

proved version IMCRA, a subspace noise tracking algorithm

and the minimum mean squared error estimation of the noise

periodogram. These and other algorithms have been recently

compared on a common evaluation database in [1].

All of the aforementioned noise PSD estimation algo-

rithms make two basic assumptions: First, the noise is as-

sumed to be “more stationary” than speech and second, time-

frequency bins can be found, which allow for the observation

of solely the noise even in a speech-noise mixture. While

still requiring the first, the algorithm presented here, does
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away with the second requirement: The noise PSD can be

estimated even if speech is dominant in the time-frequency

bin under consideration. This is made possible by assuming

that an initial estimate of the speech power is given. The

estimation of the parameters of the noise process in the short

time Fourier transform domain is then cast into the problem

of estimating the variance of a complex-valued zero-mean

white Gaussian random process (WGP) in the presence of

”noisy” observations (the target process being “corrupted” by

the superposed speech). This is solved by the Maximum a

Posteriori (MAP)-based estimator recently proposed in [2].

The remainder of this paper is organized as follows: in

Section 2 we derive the MAP estimator for the variance of

the short-time Fourier transform (STFT) coefficients of the

noise process given noisy speech. Section 3 illustrates, how

the proposed estimator is integrated in a speech enhancement

system. Next we describe the experimental framework and

the results of the performance evaluation in Section 4, before

we draw some conclusions in Section 5.

2. MAP-BASED NOISE VARIANCE ESTIMATION

In the following we derive an estimator of the noise PSD

given the STFT of the noisy speech Yk,l = Xk,l + Nk,l,
where k represents the frequency bin index and l the frame in-

dex. Xk,l and Nk,l denote the STFTs of the clean speech and
the noise signals, respectively. Since the PSD estimator treats

each frequency component identically and independently of

the others, we will drop the frequency bin index.

The STFTs are modeled as complex-valued zero-mean

WGPs. Adjoining the real and imaginary parts to two-

dimensional column vectors Yl, Xl and Nl, respectively,

and denoting the time-variant variances ofXl andNl by σ
2
X,l

and σ2
N,l, the probability density function (PDF) of Yl is a

zero-mean Gaussian with variance σ2
X,l + σ2

N,l, if we assume

that speech and noise are independent.

Our goal is to estimate the noise PSD, i.e., the variance

σ2
N,l, from the noisy observation yl, which is a realization of

Yl. To achieve this we are going to extend a special case of

the method that was proposed in [2] to the two-dimensional

case. There, an approximate MAP estimate of the parameters



of a Gaussian has been derived, if the observation is drawn

from the superposition of the Gaussian with another Gaussian

of known variance. Applying this to the problem at hand,

we are going to derive a MAP estimate of σ2
N,l+1, at frame

l + 1, given a prior distribution of the variance and a new

observation yl+1 and further assuming knowledge of σ2
X,l+1.

Let us assume for the moment that the noise is stationary,

i.e., σ2
N,l+1 = σ2

N
. If σ2

X,l+1 = 0, the scaled inverse chi-

square distribution

pσ2
N
(σ2) ∝ (σ2)−

νl+2

2 · e−
νlλ

2
l

2σ2 (1)

with the hyper parameters νl and λ
2
l , indicating the degrees

of freedom and the scale, respectively, is a conjugate prior for

the observation PDF

pYl+1|σ2
N
(yl+1|σ

2) =
1

πσ2
e−

|yl+1|2

σ2 . (2)

The posterior can then be computed as [3]

pσ2
N
|Yl+1

(σ2|yl+1) ∝ pYl+1|σ2
N
(yl+1|σ

2) · pσ2
N
(σ2) (3)

∝ (σ2)−
νl+4

2 · e−
2|yl+1|2+νl·λ

2
l

2σ2 (4)

= (σ2)−
νl+1+2

2 · e−
νl+1λ2

l+1

2σ2 , (5)

where the parameters νl and λ
2
l of (1) have been replaced by

νl+1 := νl + 2 and λ2l+1 :=
2|yl+1|

2 + νlλ
2
l

νl + 2
. (6)

With these update rules for the hyper parameters, the posterior

(3) has the same form as the prior (1). The MAP estimate at

frame l + 1 of the variance σ2
N

is then given by

σ̂2
N,l+1 = argmax

σ2

[

pσ2
N
|Yl+1

(σ2|yl+1)
]

(7)

=
νl+1

νl+1 + 2
· λ2l+1 =

νl+1

νl+1 + 2
·

(
2|yl+1|

2

νl+1
+ σ̂2

N,l

)

. (8)

Thus, νl+1 determines the weight, by which a new observa-

tion yl+1 is taken into account for the parameter update.

Now let’s turn to the case where σ2
X,l+1 6= 0. Then, the

posterior PDF has the form [2]

pσ2
N
|Yl+1

(σ2|yl+1) (9)

∝ (σ2
X,l+1 + σ2)−1 · (σ2)−

νl+2

2 · e
−

(

|yl+1|2

σ2
X,l+1

+σ2
+

νlλ
2
l

2σ2

)

,

which is different from (1), i.e., (1) is no longer a conjugate

prior. Before coming back to this issue we first show how the

maximum of (9) can be found, i.e., the MAP estimate σ̂2
N,l+1.

With ψ := σ2 > 0, searching for the maximum of (9)

corresponds to finding the minimum of

f(ψ) := −2 ln(pσ2
N
|Yl+1

(ψ|yl+1))

∝ 2 ln(σ2
X,l+1 + ψ) + (νl + 2) ln(ψ)

︸ ︷︷ ︸

f1(ψ)

+
2|yl+1|

2

σ2
X,l+1 + ψ

+
νlλ

2
l

ψ
︸ ︷︷ ︸

f2(ψ)

.

Note that f1(ψ) is strictly monotonically increasing and

f2(ψ) is strictly monotonically decreasing for ψ > 0. And

since limψ→0 f(ψ) = limψ→∞ f(ψ) = ∞, f(ψ) has exactly
one local positive minimum, which can be found as a positive

root of

f ′(ψ) =
2

σ2
X,l+1 + ψ

+
νl + 2

ψ
−

2|yl+1|
2

(σ2
X,l+1 + ψ)2

−
νlλ

2
l

ψ2

=
2[ψ − ψa]ψ

2 + (νl + 2)[ψ − ψb](σ
2
X,l+1 + ψ)2

(σ2
X,l+1 + ψ)2 · ψ2

(10)

with ψa = |yl+1|
2−σ2

X,l+1 and ψb =
νl

νl + 2
λ2l . (11)

Since the denominator is always positive, it suffices to con-

sider the numerator, which will be denoted by g(ψ). It can be
verified that g(bD) < 0 and g(bU ) > 0, where

bD = min(max(0, ψa), ψb) and bU = max(ψa, ψb).

The desired positive rootψl+1 of g(ψ) can then be determined

efficiently using a combination of a bisection and Newton ap-

proach [2] and delivers the MAP estimate σ̂2
N,l+1 = ψl+1.

In order to obtain an efficient MAP estimation procedure on

successive observations yl+1, yl+2, . . . we need to establish

a conjugate prior. This is done by approximating (9) by a

scaled inverse chi-squared distribution according to (1) with

maximum at ψl+1. As stated by (8), this is achieved by setting

λ2l+1 :=
νl+1 + 2

νl+1
· ψl+1 and νl+1 = νl + 2. (12)

If Nl is a non-stationary process, the estimation of the

time-variant variance σ2
N,l+1 can be accomplished by a sim-

ple modification: The parameter νl from (1) is kept at some

constant value νl+1 = νl = ν0. In this way we introduce a

forgetting mechanism, since the weight of the new observa-

tion is kept constant, irrespective of the number of observa-

tions used so far, see Eq. (8). The parameter ν0 thus acts as a
smoothing parameter: The larger ν0 the smoother is the time

trajectory of variance estimates. The choice of ν0 depends

on the desired trade-off between the estimator’s variance in

stationary noise and the ability to track the time-variant σ2
N,l.

The proposed algorithm has very low computational com-

plexity. Another important property is that it has only one pa-

rameter, ν0, which needs to be chosen according to the degree
of non-stationarity of the noise.

3. INTEGRATION INTO SPEECH ENHANCEMENT

SYSTEM

In practice, the speech variance σ2
X,l is not known. We there-

fore propose to use the introduced noise PSD estimator, de-

noted by MAP-B in the following, as a postprocessor of a

first speech enhancement system, which provides an estimate

σ̂2
X,k,l of the clean speech variance for all frequency bins k.



To do so it requires a first noise PSD estimator, for which any

of the known algorithms can be taken. In our experiments we

used the IMCRA algorithm [4] for this purpose.

Yk,l

IMCRA
σ̆2
N,k,l a priori

SNR

σ̂2
X,k,l

MAP-B
σ̂2
N,k,l

X̂
(I)
k,l

X̂
(II)
k,l

OM-LSA

OM-LSA

Fig. 1. Integration of MAP-B estimator into a single-channel

speech enhancement system.

Fig.1 illustrates the setup. Given the noisy speech STFT

Yk,l at its input the IMCRA algorithm delivers a first estimate

of the noise variance σ̆2
N,k,l. With this the a priori SNR is

estimated by a decision-directed approach, from which the

desired estimate of the speech variance σ̂2
X,k,l is obtained.

With this estimate the MAP-B algorithm will deliver an up-

dated noise PSD estimate σ̂2
N,k,l, which can be used in the

optimally-modified log-spectral amplitude (OM-LSA) esti-

mator X̂
(II)
k,l of the clean speech signal [4].

4. EXPERIMENTAL FRAMEWORK AND

PERFORMANCE EVALUATION

In our experiments the clean speech signals were taken from

the TIMIT database [5]. By concatenating sentences and re-

moving beginning and trailing silences, a male speaker and a

female speaker test sample were created, each consisting of

speech of seven different speakers and having a total length

of 3 minutes. The speech signals were sampled at 16kHz and
the STFT spectral analysis used a Hamming window of 512
samples length with a frame overlap of 75%.

The clean speech signals were artificially degraded by

adding noise. Four different noise types were considered.

Stationary white Gaussian noise (WGN), ’Babble’ noise and

so called ’Factory-1’ noise were taken from the Noisex92
database [6]. Moreover, to examine the performance of the

algorithm in highly non-stationary noise, we generated a

modulated version of ’Stationary WGN’ named ’Triangular

WGN’ according to the modulation signal used: The level

of the noise was increased at a rate of 2 dB/s for a period

of 3 seconds and then reduced again to the original level at

the same rate. We conducted experiments at different SNR

levels. The global SNR was varied from −5 dB to 15 dB in

steps of 5 dB.
For the reference noise PSD, against which the estimates

are to be compared, we adopted the approach taken in [1],

i.e. a recursive temporal smoothing was applied to the known

noise periodogram:

σ2
N,k,l = 0.95 · σ2

N,k,l−1 + 0.05 · |Nk,l|
2, (13)

with start value σ2
N,k,0 = |Nk,0|

2 for l = 1.
To verify the claim stated in the introduction that the

MAP-B estimator is able to estimate the noise even if the

speech is dominant, consider the trajectories depicted in

Fig.2(a). It shows the reference noise PSD σ2
N,l and the

time-variant noise PSDs σ̆2
N,l and σ̂

2
N,l estimated by IMCRA

and MAP-B, respectively, for ’Babble’ noise at an SNR of

0 dB and a frequency bin k = 97 (center frequency 3 kHz).

In the experiments we set ν0 = 40 corresponding to a time

constant of 0.164 s. Unlike IMCRA, MAP-B continuously

updates its estimate and thus follows the reference noise PSD

more closely. Fig.2(b) displays an extract of the noise PSD

estimates for ’Triangular WGN’ averaged over frequency. It

shows that the response of the MAP-B estimator to rising

noise power is much faster than that of the IMCRA estimator.
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Fig. 2. Noise PSD estimations for a noisy speech signal at

an SNR of 0 dB: (a) degraded by ’Babble’ noise for a single

frequency bin k = 97 (center frequency 3 kHz); (b) degraded
by ’Triangular WGN’ averaged over frequency.

For a quantitative evaluation we adopted the performance

measures proposed in [1], however with a slight modification.

The first measure is the minimum averaged log distance LEm
between the estimated and reference noise PSD

LEm = min
τ

[LEm(τ)] = min
τ

[

1

LK

L∑

l=1

K∑

k=1

∆k,l(τ)

]

(14)

with ∆k,l(τ) =

∣
∣
∣
∣
∣
10 log10

σ2
N,k,l−τ

σ̃2
N,k,l

∣
∣
∣
∣
∣

and ˜∈ {̆,̂ }.

LEm is the mean of the logarithmic difference between the

’true’ and estimated noise variances, averaged over frequency

bins and frames. In contrast to [1], the time-variant true noise

variances were first aligned to the temporal sequence of the

estimates and the reported value is the smallest value obtained

by varying the lag τ . This optimization was done because

the computation of the ’true’ noise variance according to (13)

and the estimation procedures can induce different latencies,

which should be eliminated.



The second performance measure is the variance of the

logarithmic difference

LEv =
1

NM

N∑

n=1

M∑

m=1

LEv,n,m with (15)

LEv,n,m =
1

LsKs

(m+1)Ls∑

l=mLs+1

(n+1)Ks∑

k=nKs+1

(∆k,l(τmin)− µnl )
2

and µnl =
1

Ks

(n+1)Ks∑

k=nKs+1

∆k,l(τmin),

where τmin = argminτ [LEm(τ)]. N and M are the num-

ber of frequency and time blocks over which the variance es-

timates are averaged. LEv,n,m is the value computed from

the time-frequency block starting at time framemLs and fre-
quency bin nKs and having the length of Ls = 2Ks frames

and Ks = 16 frequency bins. LEv measures the amount of

fluctuations in the estimated noise PSD. The stronger these

fluctuations the more likely will the speech enhancement sys-

tem produce musical tones [1].
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Fig. 3. Performance measures for various noise types and

SNRs: (a) and (b) LEm and LEv, respectively, obtained by

IMCRA andMAP-B; (c)PESQGain compared to IMCRA for

female and male speakers.

Fig.3 (a) and (b) compares IMCRA and MAP-B with re-

spect to the performancemeasures LEm and LEv for various
noise types and noise levels. Depicted are the averages over

performance measures for male and female speakers. These

results demonstrate that the proposedMAP-B method obtains

lower LEm values for all noise types and SNRs less than or

equal to 5 dB. For ’Triangular WGN’ and ’Factory-1’ the

LEm of the MAP-B estimator is better as well for an SNR

of 10 dB. Further the MAP-B estimator yields lower vari-

ance LEv of the logarithmic difference for all noise types

and SNRs than the IMCRA estimator. Fig.3 (c) shows the

gains PESQGain = PESQMAP-B − PESQIMCRA of scores

for the perceptual speech quality obtained by PESQ [7] cal-

culated using the enhanced signals X̂
(II)
l and X̂

(I)
l for fe-

male and male speakers separately. As expected, the im-

proved noise tracking has a favourable, though small, effect

on speech quality for non-stationary noise types.

5. CONCLUSION

We have proposed a new approach for the noise PSD estima-

tion in a speech enhancement system. It is based on the max-

imum a posteriori estimation of the noise variance of a non-

stationary complex white Gaussian process in the presence of

an additive Gaussian interference of known variance. In con-

trast to most known noise PSD estimators it is able to track

the noise statistics even if the speech is dominant in noisy

speech. The method has low computational complexity and

has only one parameter which has to be adjusted according to

the degree of non-stationarity of the noise. The experimental

evaluation has shown that MAP-B obtains a lower estimation

error under low SNR conditions and a lower fluctuation of

the estimated values under all tested environments, resulting

in an improved speech quality for non-stationary noise types

as measured by PESQ scores.
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