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Abstract

It has been lately shown that noise tracking and speech de-
noising can be improved by a postprocessor established
on a maximum a-posteriori based (MAP-B) noise power
spectral density (PSD) estimation algorithm. In the current
contribution we investigate the MAP-B estimator by car-
rying out a quality analysis comprising the following three
steps. First, we analyse the estimator with respect to un-
biasedness and consistency, second, the tracking ability in
non-stationary noise is investigated, and finally, the sensi-
tivity of the MAP-B noise tracker with respect to estima-
tion errors in the preprocessing stage is considered. The
findings are used to develop an optimized MAP-B post-
processor. The performance comparison with the original
MAP-B tracker indeed reveals improved performance at
high signal-to-noise ratios.

1 Introduction

Speech spectral enhancement systems include a noise PSD
estimation algorithmwhich aims at tracking the noise statis-
tics from the noisy observations. This is especially diffi-
cult to do at time-frequency (TF) bins with a strong speech
power, where many sophisticated algorithms for noise PSD
estimation hold their estimates at some constant value. In
[1] we introduced the MAP-B postprocessor, which is able
to track the statistics of non-stationary noise continuously,
even if speech is dominant in the TF bin. To do so, it re-
quires an initial estimate of the current clean speech power.
This can be provided by a first enhancement stage (ES),
upon which the MAP-B estimator acts as a postprocessor.

In [1] it has been shown that the performance of the im-
proved minima controlled recursive averaging (IMCRA)
algorithm [2], which was used as noise tracker in the first
ES, can be improved by the MAP-B postprocessor. How-
ever, some important performance aspects of the MAP-B
noise tracker have not yet been investigated. The present
contribution is going to fill this gap by analysing the qual-
ity of MAP-B estimator with respect to unbiasedness and
consistency. Furthermore we inspect estimator’s ability to
track non-stationary noise. To investigate its susceptibility
to speech power estimation errors produced in the first ES,
we also carry out a sensitivity analysis. Since a closed-
form analytical estimation rule of the MAP-B algorithm
does not exist, we carry out the quality analysis numeri-
cally with the aid of the Monte Carlo method [3].

2 Simulation Framework

A block diagram of the simulation framework is depicted
in Fig.1. The short-time Fourier transform (STFT) of a
noisy speech signal at a given frequency bin is modelled as
a complex-valued zero-mean Gaussian process Yl , which
is composed of the random processes Nl and Xl with given

time-variant variances σ2
N,l and σ2

X ,l , where l ∈ [1,L] is a
time frame index with a total signal length of L = 10000
samples in all simulations.

The MAP-B algorithm, introduced in [1], calculates
a noise power estimate σ̂2

N,l from the observation Yl and

an estimate of the current clean speech power σ̃2
X ,l . To

this end the prior probability density function (PDF) of
the noise power pσ2

N
is modelled by a scaled inverse chi-

square (SICS) distribution, which is a conjugate prior of
the observation PDF pY in case of speech absence. In or-
der to maintain an efficient MAP estimation procedure for
speech presence the posterior PDF pσ2

N |Y
is approximated

by a SICS distribution, whose mode can be effectively cal-
culated by using a combination of a bisection and Newton
approach.
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Figure 1: Simulation framework.

In our simulation framework σ̃2
X ,l is modelled in three

different ways as illustrated by the three positions of the
switch S in Fig.1. The instantaneous true speech power
|Xl |

2 is passed to the MAP-B postprocessor, if S is con-
nected to the node 1. For the switch position 2 the true
speech variance σ2

X ,l is forwarded to the noise tracker. In

the third position, randomly distributed values of σ̃2
X ,l are

generated by drawing from the gamma distribution

σ̃2
X ,l ∼ Γ(µγ ,σ

2
γ ) (1)

with mean µγ = σ2
X ,l and variance σ2

γ = var(σ̃2
X ,l) for dif-

ferent constant values of σ2
γ .

In all simulations we set the true speech power at some
constant value σ2

X ,l = σ2
X according to the desired signal-

to-noise ratio (SNR) defined as SNR = 10 · log10(PX/PN),
wherePX and PN are the average power of Xl andNl respec-
tively. For each SNR value we run K experiments result-
ing in estimates σ̂2

N,k,l with k ∈ [1,K]. The dependence of

σ̂2
N,k,l on the initial value is reduced by setting σ̂2

N,k,0 close

to the true value. The quality analysis comprises the cal-
culation of an average scaled bias b, an average standard
deviation σ , an estimator’s latency τe and the root mean
square error (RMSE). These are defined in the following.



3 Quality Analysis

In [1] we presented two different estimation rules of the
MAP-B estimator: The first, which is intended for station-
ary noise, employs an increasing degrees of freedom pa-
rameter νl+1 = νl+2, and the second, meant for non-stati-
onary noise, uses a constant νl+1 = νl = ν0. ν0 determines
the bandwidth of the noise tracker, where large values of
ν0 correspond to small bandwidth. In the following we in-
vestigate unbiasedness and consistency for both rules sep-
arately. Analysis of tracking ability and sensitivity have
been done only for the second rule, which is more relevant
for practical applications.

3.1 Unbiasedness and Consistency

In order to investigate the MAP-B estimator with regard to
its unbiasedness and consistency we generate the complex-
valued random process Nl with the constant true noise po-
wer σ2

N,l = σ2
N = 1 and set the switch S to the position 1 as

illustrated in Fig.1.

3.1.1 Increasing Degrees of Freedom

Fig. 2 shows histograms of σ̂2
N,k,l at l = {250,1000,2500,

5000,10000} samples after the start of the estimation pro-
cess for the three different SNR values {−5,0,5}dB and
the total number of simulations K = 10000. The recursion
on the degrees of freedom was initialized with ν0 = 40.

Defining the scaled bias bl observed after processing of
l samples by

bl =
σ̄2
N,l −σ2

N

σ2
N

, where σ̄2
N,l =

1

K

K

∑
k=1

σ̂2
N,k,l , (2)

it can be observed in Fig. 2(a) that the MAP-B estima-
tor seems to be asymptotically bias-free (liml→∞ bl = 0)
for small SNR. However, the bias of the MAP-B postpro-
cessor does not vanish in Fig. 2(c). Furthermore it grows
slightly with increasing SNR as further simulations have
shown.
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Figure 2: Histograms of MAP-B estimates σ̂2
N,k,l for dif-

ferent l = {250,1000,2500,5000,10000} at an SNR of
(a) −5dB, (b) 0dB and (c) 5dB.

The figures further suggest, that, at least for low SNR,
the MAP-B estimator is consistent, since the variance of
the estimates (i.e. variance of the histograms) tends to zero
if the number of observations l tends to infinity. Again,
the larger the SNR, the more observations are required to
reach this asymptotic behaviour.

The shapes of the histogram in Fig. 2 further seem to
indicate that the lower the SNR the more the estimation

error tends to have a normal distribution. This is to be ex-
pected, because for σ2

X ,l = 0 and thus SNR→−∞ the esti-

mate is a simple linear combination of the observations [1]

σ̂2
N,l+1 =

νl+1

νl+1+ 2
· σ̂2

N,l +
2

νl+1+ 2
· |Yl+1|

2. (3)

3.1.2 Constant Degrees of Freedom

The case of a constant value ν0 is more relevant for prac-
tical applications, as it allows for tracking the statistics of
non-stationary noise. Fig.3 displays the resulting scaled
bias

b=
1

L/2

L

∑
l=L/2

bl (4)

averaged over the last L/2 samples and the average stan-
dard deviation σ defined as

σ =
1

L/2

L

∑
l=L/2

√

1

K− 1

K

∑
k=1

(

σ̂2
N,k,l − σ̄2

N,l

)2

. (5)

Results of K = 1000 simulations are presented as a func-
tion of SNR in dB for different degrees of freedom ν0.
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Figure 3: (a) Average scaled bias b and (b) average stan-
dard deviation σ of MAP-B estimator over SNR values in
dB for degrees of freedom ν0 = {5,10,20,40,100}.

In Fig. 3(a) it can be observed that the average scaled
bias b of the MAP-B estimator is always positive. It in-
creases with growing SNR values and decreasing ν0 val-
ues. According to Fig. 3(b) the average standard deviation
σ rises with decreasing ν0 and seems to be independent
of SNR values. As a conclusion, the parameter ν0 should
be chosen large enough to ensure a low value of the mean
squared error MSE= b2 ·σ4

N +σ2.

3.2 Tracking Ability

An analysis of estimator’s tracking ability is performed by
setting the switch S to the position 2, see Fig. 1, and gen-
erating a time-variant true noise power

σ2
N,l = 1+ sin2

(

2π · l

L

)

. (6)

First we calculated the RMSE as a function of the delay τ
defined as

RMSE(τ) =
1

L− l0

L

∑
l=l0+1

√

1

K

K

∑
k=1

(

σ̂2
N,k,l −σ2

N,l−τ

)2

.

(7)
for K = 1000 experiments. For computation of RMSE(τ)
samples σ̂2

N,k,l are gathered after l0 = 50, in order to avoid



the impact of the acquisition phase and solely concentrate
on the tracking performance. The optimal latency of the
tracker is defined as

τe = argmin
τ

[RMSE(τ)]. (8)

However, this often results in unacceptably large delays
in a speech communication application. We therefore con-
sider in the following the performance for zero latency, i.e.,
RMSE(τ = 0), see Fig. 4(a). As expected, estimators per-
formance deteriorates for growing SNR values. Moreover
RMSE(τ = 0) increases both for little values of ν0 because
of growing estimator’s bias b and for large values of ν0 be-
cause of rising estimator’s latency τe. The figure further
suggests that ν0 = 40 is a good choice.
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Figure 4: (a) RMSE(τ = 0) over degrees of free-

dom ν0 and (b) estimator variance σ2 over the vari-
ance of the gamma distribution σ2

γ for SNR values

{−10,−5,0,5,10}dB.

3.3 Sensitivity to Erroneous Speech Power Es-
timates

Here we consider the behaviour of the MAP-B postpro-
cessor in case of randomly distributed errors σ̃2

X ,l accord-

ing to the equation (1), which corresponds to the posi-
tion 3 of the switch S in Fig.1. Using a constant noise
power σ2

N,l = σ2
N = 1 and the constant degrees of free-

dom ν0 = 40 we run K = 1000 simulations for different
SNR values of {−10,−5,0,5,10}dB. The resulting av-

erage estimator variance σ2 is shown in Fig. 4(b) as a
function of the variance σ2

γ of the speech power estima-

tion error for the range σ2
γ ∈ (10−2,10). The black dashed

line corresponds to the variance of the estimator based on
the trivial estimation rule: σ2

Y = σ̃2
X + σ̂2

N , which results in

var(σ̂2
N) = σ2

γ .

It is striking that the MAP-B estimator is quite insensi-
tive to estimation errors in σ2

X : it holds its estimation vari-

ance at a low constant value for a wide range of σ2
γ values.

However, from a certain value of σ2
γ on, the estimator vari-

ance increases rapidly.

4 Optimization of MAP-B estimator

According to the results of the quality analysis we suggest
two improvements of the MAP-B postprocessor: In order
to obtain an unbiased estimate we subtract an estimate of
the bias: σ̂2

N,UN = (1− b(SNR)) · σ̂2
N . As the bias depends

on the SNR, see Fig. 3(a), it is approximated by

b(SNR) = βmax ·

(

arctan(SNR)

π
+

1

2

)

(9)

with a bias compensation factor βmax = 0.01.
In [1] we noticed, that MAP-B postprocessor could im-

prove the noise tracking predominantly for low SNR val-
ues. This can be attributed to the fact that the speech power
estimation of the first ES is very unreliable during time pe-
riods with the strong speech power. An effective way to
improve the MAP-B performance for high SNR values is
to decrease its bandwidth with increasing SNR. This can
be accomplished by updating rule

ν0(SNR) = ν0+
∆ν0
π

· arctan(SNR) , (10)

where ν0 = 40 and ∆ν0 = 10.

5 Experimental Evaluation

The MAP-B postprocessor is used as a noise PSD tracker

in the 2nd ES of a single-channel speech enhancement sys-
tem, which is depicted in Fig. 5.
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Figure 5: Integration of MAP-B postprocessor into a
single-channel speech enhancement system.

Yk,l represents the STFT of the noisy speech, where k
and l are the frequency bin and the frame index respec-
tively. For noise tracking in the first ES we used the Mini-
mum Statistics (MS) approach [4] with the data window
length DMS = 120, the smoothing parameter αMS = 0.9
and the bias correction factor Bmin,MS = 1.66, which are
fixed for all frequency bins and frames. Notice that in [4]
the values of αMS and Bmin,MS are estimated for each fre-
quency bin and each frame. The ’SNR’-block represents
a decision-directed approach resulting in an estimation of

a-priori SNR ξ̃k,l [5], from which we compute a current

speech power estimate σ̃2
X,k,l and a recursive average of

the a-priori SNR

ζ̃k,l = αζ · ζ̃k,l−1+(1−αζ) · ξ̃k,l

with αζ = 0.7. While the original MAP-B uses only σ̃2
X,k,l

for the calculation of noise power estimates σ̂2
N,k,l , the im-

proved MAP-B algorithm utilizes additionally ζ̃k,l accord-
ing to (9) and (10). Notice that the bias bk,l and the de-
grees of freedom ν0,k,l are updated for each frequency bin

and each frame index. Enhanced speech signals X̃k,l and

X̂k,l are calculated by the optimally-modified log-spectral
amplitude (OM-LSA) estimator [5].

For experimental evaluation we used the clean speech
signals from the TIMIT database [6]. By concatenating
sentences and removing beginning and trailing silences, a
male speaker and a female speaker test sample were cre-
ated, each consisting of speech of seven different speakers
and having a total length of 3 minutes. The clean speech
signals were artificially degraded by the white Gaussian



noise (WGN), ’F16’, ’Babble’ and ’Factory 1’ noise sig-
nals from the Noisex92 database [7]. All signals were
sampled at 16kHz and the STFT spectral analysis used a
Hamming window of K = 512 samples length with a frame
overlap of 75%. The global SNR was varied from −10dB
to 20dB in steps of 5dB. The reference noise PSD σ2

N,k,l

was generated by applying a zero-phase filter to the known
noise periodogram |Nk,l |

2. For this we used the MATLAB

function f iltf ilt(0.1, [1 − 0.9], |Nk,l |
2).

The noise tracking performance is evaluated by calcu-
lating the reduction of the log-spectral distance between
the true and the estimated noise power from the first to the

second enhancement stage, defined as RSD = S̃D− ŜD with

S̆D =
1

L

L

∑
l=1

[

2

K

K/2

∑
k=1

10log
σ2
N,k,l

σ̆2
N,k,l

]− 1
2

for ˘∈ {˜,ˆ}.

RSD, as depicted in Fig. 6, was calculated by using
the original [1] and the improved MAP-B postprocessor
in the second ES of the system in Fig. 5 for different noise
types and SNR values. Furthermore the reduction of log-
spectral distance averaged over all considered SNR values
is printed in Fig. 6 for each noise type.
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Figure 6: (a) Reduction RSD of log-spectral distance calcu-
lated by using the original and the improved MAP-B post-
processor for different noise types and SNR values.

The figure shows that the improved MAP-B postpro-
cessor reduces the estimation error of the MS noise tracker
better than the originalMAP-B estimator for all noise types.
On average, the RSD was improved by the optimized tracker
in comparison to the original one by about 28%. How-
ever, the original MAP-B estimator reduced already the
estimation error of the MS approach by 15%, so that the
averaged reduction of the estimation error of the MS ap-
proach achieved by the improved MAP-B estimator now
totals 19%.

Looking at the experimental results for different SNR
values we notice that the optimized MAP-B postprocessor
improves the noise tracking particularly well for high SNR
values. This improvement is due to the bias reduction and
the varying of the bandwidth of the MAP-B approach ac-
cording to (9) and (10). It should be mentioned that the
experimental evaluation of the original MAP-B estimator
in [1] has revealed its weakness to track the noise statistics
in case of high SNR values. With the proposed modifica-
tions, this deficiency has been solved.

However the improved noise tracking hardly affects the

quality of the enhanced signal X̂k,l , as an additional evalua-
tion, employing the perceptual evaluation of speech quality
(PESQ) measure according to ITU-T P.862 [8] has shown.

This may be explained by the fact that it is in general diffi-
cult to improve the enhanced speech quality solely by im-
proving the noise tracking.

It should be mentioned that similar improvements in
noise tracking have been observed for the case of using the
IMCRA estimator [2] as the noise tracker in the first ES.

6 Conclusions

A quality analysis of the MAP-B noise PSD estimator has
been carried out and the simulation results suggest, that
for the case of increasing degrees of freedom parameter
νl the estimator is asymptotically unbiased only for low
SNR. Furthermore, the larger the SNR, the more obser-
vations are required to reach a low estimation error. For
practical applications with non-stationary noise the param-
eter, however, should be kept at a constant value νl = ν0
to avoid an increasingly narrow filter bandwidth. This re-
sults in a biased estimate, where the bias is always positive
(i.e. the noise power is overestimated) and where the bias
grows with increasing SNR and decreasing parameter ν0.

A striking feature of the MAP-B estimator is that it
keeps its low noise estimation variance for a wide range of
estimation errors of the input speech power (see Fig. 4b).
The variance is furthermore independent of the SNR and,
not surprisingly, it grows with decreasing parameter ν0, i.e.
wider filter bandwidth. An analysis of tracking ability has
shown that estimator’s latency increases with increasing
parameter ν0 as expected. An reasonable value of degrees
of freedom seems to be ν0 = 40.

With the findings of the quality analysis we optimized
theMAP-B postprocessor by introducing a SNR-dependent
bias reduction and bandwidth adjustment. We then com-
pared the performance of this improved estimator with the
original one by experimental evaluation in a single-channel
speech enhancement system. The results show that the op-
timization of the MAP-B postprocessor leads to improved
noise tracking, particularly for high SNR values.
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