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Abstract
In this paper we propose a procedure for estimating the geo-
metric configuration of an arbitrary acoustic sensor placement.
It determines the position and the orientation of microphone ar-
rays in 2D while locating a source by direction-of-arrival (DoA)
estimation. Neither artificial calibration signals nor unnatural
user activity are required. The problem of scale indeterminacy
inherent to DoA-only observations is solved by adding time dif-
ference of arrival (TDoA) measurements. The geometry cal-
ibration method is numerically stable and delivers precisere-
sults in moderately reverberated rooms. Simulation results are
confirmed by laboratory experiments.
Index Terms: unsupervised, sensor network, geometry calibra-
tion

1. Introduction
Spatially distributed microphone arrays are not only employed
for acoustic beamforming but also for acoustic source localiza-
tion. The latter can be used for advanced teleconferencing sys-
tems, ambient communication, or location based services [1],
making microphone arrays an important component of smart
environments. Acoustic source localization, however, requires
that the position and orientation of the sensor arrays is known.
Their determination, termed geometry calibration, is often a te-
dious manual task which is contradictory to the desire to have a
quick and effortless system setup.

Some approaches have been proposed to conduct automatic
geometry calibration for acoustic and/or visual sensors. They
may be grouped according to the kind of observations available.
The first category comprises methods that assume that all coor-
dinates of the source signal’s position are measurable. From
these data, which are typically given in Cartesian coordinates,
the network geometry can be inferred [2]. The calibration itself
can, for example, be based on a singular value decomposition
[3].

However many sensors cannot deliver the full coordinate
information. For example, linear microphone arrays in the far
field of the source can only determine the direction-of-arrival,
but not the range. The second category therefore consists of
methods that assume that only angle information is available.
Here, a system of nonlinear equations is set up and solved itera-
tively for the relative source and sensor locations [4]. Only if at
least one distance is known a priori the absolute positions can
be determined. This, however, contradicts the goal of a fully
unsupervised automatic calibration.

Our approach falls into this second category, but we will
present a method to circumvent the need for an a priori known

distance. In [4] it has been observed that the solution of thesys-
tem of nonlinear equations is numerically very sensitive and that
depending on the initial conditions and the geometric configu-
ration the iterations do not converge. In this paper we present a
reformulation which greatly improves numerical stability.

Some approaches use special calibration signals to identify
a unique source for all sensors and to ease the source localiza-
tion [5]. Our goal, however, was to employ the user’s speech as
calibration signal. The user is not required anything else than
speaking and walking around.

The paper is organized as follows: In Section 2 the 2-
dimensional calibration problem is introduced and the solution
presented in [4] is described. Section 3 presents our reformula-
tion and Section 4 illustrates how the missing distance informa-
tion can be obtained by TDoA measurements. The calibration
algorithm consisting of the iterative Newton algorithm embed-
ded in a random sample consensus method for outlier rejection
is shown in Section 5, which is followed by experimental results
in Section 6 and conclusions drawn in Section 7.

2. Background
We are interested in geometry calibration in 2D where we as-
sume that the sensors are placed near the walls such that the
source is inside a polygon spanned by the sensor locations. Fur-
ther we assume that the individual shapes of the microphone
arrays are known (e.g. by the shape calibration method of [6]),
such that each array can deliver an estimate of the direction-of-
arrival of a desired source signal.

The i-th observation of a source at the unknown position
Pi = [xP

i , y
P
i ]T results in an observed angleφij at thej-th sen-

sor, which has the unknown position(xS
j , y

S
j ) and the unknown

rotationθj . Neither are the positions and rotations of the sensors
nor are the distancestjk between the sensors known. Figure 1
shows a setup consisting of three sensors and a trajectory with
six explicitly marked observations (red dots).
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Figure 1:Geometry calibration problem
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Figure 2:Geometric relation between observation and sensor

Figure 2 gives a detailed view of the geometric relations
for the i-th observation at thej-th sensor. Following [4], the
geometric relation can be formulated by

tan (θj + φij) =
yP
i − yS

j

xP
i − xS

j

(1)

which can be reformulated as

x
S
j tan(φij)− y

S
j − (xP

i + y
P
i tan(φij)) tan(θj) + y

P
i (2)

+ x
S
j tan(θj) + y

S
j tan(φij) tan(θj)− x

P
i tan(φij) = 0.

Let us assume that the sensor network consists ofK sensors,
which implies that we have3(K − 1) unkowns (coordinates
(xS

j , y
S
j ) and rotationθj , j ∈ [2, K]). The position and the

rotation of one sensor can be arbitrarily fixed, so the amountof
unkowns is reduced by three. Each observation introduces two
new unknowns(xP

i , y
P
i ) and results inK additional equations

(see (2)). Thus at least

N ≥
3(K − 1)

K − 2
(3)

independent observations are required to be able to find a solu-
tion.

LetΩ = [xS
2 , y

S
2 , θ2, . . . , x

S
K , yS

K , θK , xP
1 , y

P
1 , . . . , xP

N , yP
N ]

be the vector of3(K − 1) + 2N unknowns andf(Ω) the sys-
tem of equations formed by (2) ifj = 2, . . . ,K and i =
1, . . . , N . Since a closed form solution cannot be derived, New-
ton’s method is employed to solve it numerically:

Ωκ+1 = Ωκ − J(Ωκ)
−1 · f(Ωκ), (4)

with Ωκ denoting the estimate of the unknowns at theκ-th iter-
ation andJ(Ωκ)

−1 the (pseudo-)inverse of the Jacobian matrix
containing the partial derivatives off .

3. Improvements
The approach proposed in [4] (Eq. (1), (2) and (4)) has the
following disadvantages. First, Newton methods are sensi-
tive towards the initial values. If the initial valuesΩ0 are far
away from the optimal solution the method may not converge
or may get stuck in a local minimum. For the problem dis-
cussed here we would have to guess reasonable initial valuesof
3(K − 1) + 2N unknowns, certainly not an easy task. Second,
the system of equations may cause numerical problems, since
thetan-functions reaches infinity for odd multiples of±π

2
. Ad-

ditionally, the partial derivatives of thetan-functions which are
required in Eq. (4) will be extremely large for angles close to
±π

2
.

Experiments revealed that the aforementioned disadvan-
tages of the Newton method, especially the numerical prob-
lems caused by thetan-functions, resulted in severe conver-
gence problems: With random initializations, the iterations did
not converge in almost half of all experiments. If artificialnoise
was added to observations from simulated setups, the conver-
gence problems were aggravated, even for small values of the
noise. Another observation we made was that the convergence
itself depended on the anglesφij : If the predominant part of the
observations lies in the vicinity of±π

2
the method only rarely

converged. Adding an arbitrary value before starting the itera-
tions eased the problem.

Stability can be improved by reformulating the system of
equations. Multiplying Eq. (2) withcos(φij) andcos(θj) the
following equation is obtained:

+x
S
j sin(φij) cos(θj)− y

S
j cos(φij) cos(θj) (5)

−x
P
i cos(φij) sin(θj)− y

P
i sin(φij) sin(θj)

+x
S
j cos(φij) sin(θj) + y

S
j sin(φij) sin(θj)

−x
P
i sin(φij) cos(θj) + y

P
i cos(φij) cos(θj) = 0

The partial derivatives with respect to the unknowns only con-
tain sin- andcos-functions and thus will be numerically more
stable as the partial derivatives are now bounded. Simulations
confirmed that the Newton method was now much more stable
(see Section 6).

Please note that the system of equations still suffers from
scale invariance. As is obvious from Eq. (1) all lengths can be
multiplied by an arbitrary scaling factorν without influencing
the solution. In order to avoid the trivial solution (all unknowns
equal to zero) an equation has to be added which describes a
distance relation between two unknowns. In [4] the issue was
solved by assuming a priori knowledge of one distance, e.g. the
distance between two sensors. However, the need for a known
distance can be avoided in the case of acoustic signals and at
least two approximately synchronized sensors. Then the scale
indeterminacy can be solved by using time difference of arrival
(TDoA) information, as will be explained in the next section.

4. DoA and TDoA estimation
The proposed calibration method requires the relative obser-
vation anglesφij of the sensors. In the case of acoustic sen-
sors, e.g. linear microphone arrays, the angles may be esti-
mated using an adaptive beamforming approach [7] or a gen-
eralized cross-correlation method (e.g. GCC-PHAT) [8]. We
prefer beamforming to GCC-PHAT since the required window
sizes can be chosen smaller and thus the averaging effect of
large windows during fast movements of the speaker is reduced.

The error of the position estimation depends on the distance
between the speaker and the closest wall if the microphone ar-
rays are placed at the walls. This known issue is caused by
an underestimation of the DoA values, if they approach±π

2
.

Figure 3 shows the trajectory of an estimated angle for a room
of size4 × 4 m using a linear microphone array. In order to
reduce the influence of this underestimation on the calibration
results angles are incorporated only if the absolute valuesof all
angles are smaller than0.35π.

The estimation of the TDoAs requires larger observation
windows compared to the DoA estimation, since the distance
between arrays is significantly higher than the distance between
sensors of the same array. Here, TDoAs are estimated by GCC-
PHAT in combination with a state-space filter, e.g. Kalman or
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Figure 3:Underestimation error of angles

particle filter.
Each combination of sensorsj andk delivers a TDoA value

τjk(i) for the i-th observation which can be used in a distance
equation

√
(xS

j − xP
i )

2 + (yS
j − yP

i )2 −
√

(xS
k − xP

i )
2 + (yS

k − yP
i )2

= c · τjk(i) (6)

with c being the velocity of sound. Replacing the positions
[xP

i , y
P
i , xS

j , y
S
j , x

S
k , y

S
k ] by [νxP

i , νy
P
i , νxS

j , νy
S
j , νx

S
k , νy

S
k ]

and using the results of the calibration procedure allows the es-
timation of the unknown scaling factorν with Eq. (6). To im-
prove the estimate, the scaling factor should be averaged across
several spatially distributed observations.

5. Calibration procedure
The first step of the calibration is the DoA estimation using the
adaptive beamformers, gathering the set of observationsO′ =
{φij} with 1 ≤ i ≤ N ′ and 1 ≤ j ≤ K. From this set
all observation pairs violating the condition|φij | < 0.35π are
removed, resulting in a new setO. At leastN observations are
required to solve the system of equations (5). If more thanN

observations are available, a least squares (LS) solution can be
obtained. In the experiments we will compare the LS solution
using all observationsO against a random sample consensus
(RANSAC,M rounds) method [9], which is known to be more
robust against outliers. In the following we will briefly present
the RANSAC method.

In each RANSAC round do:

1. Randomly select a setC ⊂ O of N observations

2. GenerateR random initial valuesΩ(r) and determine

Ω0 = argmin
Ω(r)

{|f(Ω(r))|} , r = 1 . . . R (7)

3. Iterate NewtonΩκ+1 = Ωκ − J(Ωκ)
−1 · f(Ωκ) until

either

(i) |Ωκ+1 −Ωκ| < ∆, or

(ii) Maximum number of iterations reached, or

(iii) |f(Ωκ)|
2 < ǫ

with appropriately chosen values for∆ andǫ.

4. Extend the consensus setC:

a) Project observationsO onto a common coordinate
system usingΩκ

b) Calculate intersection pointsWjk(i) of the DoA’s
of thej-th andk-th sensor regarding observationi
(see Fig. 4)

c) Compute average scatterd(i) = 〈|Wjk(i)−P̂i|
2〉

of intersection pointsWjk(i) from their mean
P̂i = 〈|Wjk(i)|〉, where〈·〉 denotes averaging op-
eration

d) Add all observations withd(i) < σ to consensus
set, withσ as an appropriately chosen threshold

5. Stop iteration if consensus setC contains more than
70% of the elements ofO, else

a) if size ofC has changed⇒ Goto 3.

b) if size ofC has not changed⇒ Goto 1.

In each RANSAC round an estimate forΩ is found. Subse-
quently, either an average value over allΩ can be calculated
or the set with the smallest error with respect tof(Ω) can be
selected.
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Figure 4:Projection error used for consensus set extension

Step two of the RANSAC (Eq. (7)) is a Monte-Carlo ap-
proach to solve the initialization problem discussed in Section 3.
Although the random initialization and the reformulation of the
system of equations considerably improved the convergenceof
the Newton method, in some runs the RANSAC method did not
converge to a coherent solution and aborted after a maximum
number of iterations, see the following section for quantitative
results.

6. Experiments
We compiled a database consisting of artificially reverber-
ated recordings with a minimum duration of90 s per setup.
Two rooms with reverberation times (T60) between50 ms and
450 ms were simulated using the image method from [10], in-
cluding a speaker walking along a random path.

Experiments revealed that a symmetric placement of sen-
sors (e.g. a sensor in each corner of a room [4]) considerably
improves the calibration results. However, since we cannotas-
sume that sensors are always arranged in a symmetric way, we
will consider symmetric (room A:4× 4 m, sensors centered at
each wall) and asymmetric arrangements (room B:4 × 3.5 m)
in our experiments. Fig. 5 illustrates the sensor placements.

The calibration error is measured in terms of the translation
errorTErr which is the average difference between the estimated
and the true sensor positions, and the rotation errorRErr, which
is the average error of the estimated sensor orientations. We
will compare the calibration results using Eq. (2) and idealscal-
ing factors (superscripttan) against the results obtained by us-
ing Eq. (5) and either ideal scaling factors (superscriptideal) or



Room A Room B Lab

Figure 5:Sensor positions (red dots) in rooms

scaling factors estimated from TDoA values (superscriptreal).
The calibration results are given for employing the RANSAC
method (RS) (fortan, ideal andreal) or for using all available
observations within a least squares (LS) solution (ideal andreal
only) .

Since the speakers were moving during the recordings, the
TDoA values had to be estimated by using a small window size
of 4096 samples at16 kHz sampling rate. Subsequently, the
TDoA values were processed using a Kalman filter. There-
for the TDoA values were transformed to length differences
χjk(i) = c · τjk(i) and a random walk process was assumed
for the speaker movement. This approach achieved a TDoA er-
ror reduction of approximately40%.

T60 T tan
Err Rtan

Err T ideal
Err [m] T real

Err [m] RErr [◦]
[ms] [m] [◦] LS RS LS RS LS RS
50 0.12 3.70 0.04 0.05 0.28 0.27 1.03 1.47
100 0.14 4.28 0.09 0.09 0.10 0.12 1.19 0.97
150 0.26 8.18 0.12 0.13 0.33 0.14 3.05 3.57
200 0.20 6.13 0.06 0.07 0.20 0.37 1.34 1.35
250 0.38 11.00 0.13 0.14 0.36 0.45 2.90 3.32
300 0.17 3.00 0.15 0.11 0.17 0.26 3.08 3.07
350 0.30 9.09 0.11 0.09 0.23 0.36 2.67 1.71
400 0.20 3.61 0.20 0.23 0.32 0.44 3.07 4.19
450 1.30 89.42 0.08 0.07 0.20 0.47 1.26 0.32

Table 1: Room A: Symmetric sensor placement

Table 1 shows the experimental results for room A with the
symmetric sensor placement, while Table 2 displays the results
of the asymmetric sensor placement of room B. The calibration
errors are higher than in the symmetric case, especially if the
system of equations with thetan-functions is employed. It can
be noted that the errors do not increase monotonically with the
amount of reverberation. We attribute this to the random move-
ment of the speaker which results in more or less disturbed ob-
servations.

T60 T tan
Err Rtan

Err T ideal
Err [m] T real

Err [m] RErr [◦]
[ms] [m] [◦] LS RS LS RS LS RS

50 0.13 4.00 0.07 0.05 0.09 0.04 2.52 1.66
100 0.36 5.39 0.23 0.14 0.25 0.15 5.84 2.96
150 0.83 29.69 0.36 0.16 0.36 0.28 10.68 4.75
200 0.84 16.38 0.37 0.49 0.66 0.73 9.65 12.33
250 0.52 4.94 0.58 0.74 1.26 0.96 13.30 17.91
300 0.95 14.59 0.66 0.50 1.17 0.50 14.40 15.08
350 1.00 25.65 0.39 0.69 1.10 0.74 10.41 19.07
400 0.77 20.54 0.82 0.96 0.97 1.20 21.96 26.07
450 1.00 9.79 0.36 0.36 1.45 0.64 7.37 8.17

Table 2: Room B: Asymmetric sensor placement

For both setups, the new proposed system of equations (5)
(T ideal

Err , RErr) significantly reduces the translation error and the
rotation error compared to the previously proposed form (2)
(T tan

Err , R
tan
Err). The improved numerical stability can be seen by

the fact that thetan-formulation (Eq. (2)) did not converge in
44.7% of the RANSAC rounds, while the new proposed formu-
lation (Eq. (5)) failed only in13.6% of all random initializa-
tions.

The experiments show that RANSAC has no notable advan-
tage in the easy case of a symmetric sensor placement (room A).

However, in the tricky case of an asymmetric sensor placement
(room B), RANSAC mostly outperforms the least squares so-
lution. Scaling the geometry with the estimated TDoA values
increases the translation error (T real

Err vs. T ideal
Err ). This can be

attributed to an overestimation of the scaling factor caused by
erroneous TDoA values.

We also conducted experiments in our laboratory (3.4 ×
6 m,T60≈157 ms), where we used an asymmetric sensor place-
ment (see Fig. 5). The average translation error wasT ideal

Err =
0.22 m and the rotation error wasRErr = 2.3◦. When we used
the TDoA estimates to scale the geometry the translation error
was increased toT real

Err = 0.25 m. These results are in line with
the simulations.

7. Conclusions
We have presented a new approach for calibrating a sensor net-
work consisting of spatially distributed microphone arrays. The
approach utilizes observations from moving speakers and does
not need any special calibration signal or artificial user behavior.
It reduces the average translation and rotation error by roughly
a factor of2 compared to a recently published method. Addi-
tionally, we used TDoA values to solve the scale indeterminacy
problem of calibration methods which are based on DoA-only
observations. The findings from simulations were confirmed by
an experimental setup in the laboratory.
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