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Abstract

In this paper we propose to jointly consider Segmental Dy-
namic Time Warping and distance clustering for the unsuper-
vised learning of acoustic events. As a result, the computa-
tional complexity increases only linearly with the dababase size
compared to a quadratic increase in a sequential setup, where
all pairwise SDTW distances between segments are computed
prior to clustering. Further, we discuss options for seed value
selection for clustering and show that drawing seeds with a
probability proportional to the distance from the already drawn
seeds, known as K-means++ clustering, results in a significantly
higher probability of finding representatives of each of theun-
derlying classes, compared to the commonly used draws from a
uniform distribution. Experiments are performed on an acoustic
event classification and an isolated digit recognition task, where
on the latter the final word accuracy approaches that of super-
vised training.
Index Terms: unsupervised, clustering, acoustic events

1. Introduction
Acoustic event classification is concerned with determining the
identity of sounds and their temporal position in audio sig-
nals. This information can be used to draw conclusions about
the physical environment or the activity that has produced the
sound. Such an acoustic scene analysis may be used for au-
tomatic highlight detection in videos, for surveillance tasks,
ambient assistant living devices, or smart environments ingen-
eral. As it depends very much on the application which acoustic
events are relevant, it is desirable to learn the events in anun-
supervised fashion to avoid the need for the costly collection of
application-specific labeled training data.

There are at least two major approaches to unsupervised
pattern discovery in audio or speech data. The first employs
machine learning techniques, such as non-negative matrix fac-
torization (NMF), to find recurrent basic building blocks, which
in the case of speech could be related to phonemes [1]. A criti-
cal issue is how to capture the temporal correlation of the data,
as NMF per se provides no handle for this. While several exten-
sions of NMF have been proposed in this direction, the second
approach is more directly addressing the sequence character of
the input data: Segmental dynamic time warping (SDTW) has
been proposed to discover recurring speech patterns in audio
streams. Using the matrix of pairwise distances between seg-
ments computed by SDTW, graph clustering techniques are ap-
plied to identify recurrent temporal patterns [2]. The segment-
wise time warping method from [3] extends the set of allowed
warping paths for an elaborate time-series matching at the ex-
pense of an increased computational complexity.

While unsupervised pattern discovery by SDTW was

shown to achieve high cluster purity, a major drawback are its
high computational costs, which renders the methods quickly
unfeasible for large data sets. Methods have therefore beende-
veloped to address this issue. In [4] an approach called “un-
bounded dynamic time warping” was proposed which utilizes
so-called synchronization points, i.e. alignment points which
restrict the search space and thus avoid the exhaustive com-
putation of the complete distance matrix. Additionally, local
restrictions, that do not allow for strict insertions or deletions,
are applied to further restrict the number of warp paths to be
evaluated. An overview of sequence matching approaches can
be found in [5].

In the following we will present an approach that greatly re-
duces the computational costs of SDTW-based pattern discov-
ery. We argue that the computation of the complete matrix of
pairwise distances between allNtot audio segments is unneces-
sary, as we will never carry out a full search to obtain the opti-
mal clustering, because this is NP hard. However, if suboptimal,
greedy algorithms are applied, it is advantageous to consider the
steps of distance computation by SDTW and clustering together
and compute only those distances that are actually requiredfor
clustering. This will bring down the computational complexity
from an order ofO(N2

tot) operations toO(K · Ntot), whereK
is the number of seed values of the clustering, which is much
smaller thanNtot. Further we will investigate the use of the K-
means++ algorithm for the selection of the seed values, which
will be shown to result in a particularly small number of seed
values required to achieve a high probability of choosing a seed
value from each of the different acoustic event classes.

The paper is organized as follows. We will first briefly de-
scribe SDTW in Section 2 and then discuss our clustering ap-
proach, in particular the choice of seed values and the interac-
tion with SDTW. In the experiments section we quantify the
computational savings and show that a clever choice of seed
values leads to improved cluster purity, both on a speech andan
acoustic event database. The paper is finished with conclusions
drawn in Section 5.

2. Segmental Dynamic Time Warping
We consider the unsupervised learning of acoustic patterns. Let
E be the set of acoustic event classes, whose cardinalityE =
|E|, i.e. the number of different event classes, is assumed to be
known. We are given a databaseχ = {x1, . . . , xNtot} of Ntot

recordings of acoustic eventsxi with N events per category,
i.e.:Ntot = N · E.

Our goal is to partition the database intoE clusters such
that each cluster ideally contains only the samples of one event
class. In principle this can be solved by computing a similarity
measure among all pairs of segments and conduct hierarchical
clustering until the target number ofE clusters has been ob-



10 20 30 40 50 60 70

10

20

30

40

50

60

70

80

 

 
Limits
Warping paths
Selected path

Feature vector index of segmentxi

F
ea

tu
re

ve
ct

or
in

de
x

of
se

gm
en

t
x
j

Figure 1: Illustration of segmental dynamic time warping

tained. Dynamic time warping (DTW) has been shown to be
a most successful approach to obtain a single distance value
describing the similarity of two time series of feature vectors.
Note that the individual acoustic events can be of very differ-
ent length, even if from the same class. Consider for exam-
ple a ringing tone, whose length may vary between less than a
second and several seconds. For this reason it is necessary to
extend DTW towards the segmental DTW (SDTW) to find re-
curring subsequences, as proposed by [2]. SDTW consists of
two main components: a local alignment procedure which pro-
duces multiple warp paths, and a path trimming method which
retains only the lower distortion regions of an alignment path.

In Fig. 1 an example is depicted. The black dotted lines in-
dicate the constraints introduced to restrict the allowable shapes
that a warp path can take. Within each diagonal region DTW is
applied to find an alignment path (blue lines in Fig. 1). Finally,
a path refinement is carried out on each local alignment path
to identify the length-constrained minimum average (LCMA)
distortion fragment (red line in Fig. 1). The LCMA is that sub-
sequence of the alignment path of a certain minimum length
which achieves a minimum value of the distance measure, see
[2] for details. This so found value of the distance measure
is then taken as the distanced(xi, xj) between the two acous-
tic eventsxi andxj . In [4], the normalized inner product has
been proposed as local distance measure between two feature
vectors. This is in line with our own findings, where it consis-
tently delivered better final clustering results than the Euclidian
or Mahalanobis distance.

A problem of SDTW, that has limited its applicability, is
its large computational complexity. The distance matrixD =
{d(xi, xj)}, 1 ≤ i, j ≤ Ntot is input to the subsequent clus-
tering stage. Depending on the clustering method chosen, the
availability of the complete distance matrix is however notnec-
essary, as will be explained next.

3. Clustering Approach

With the assumption that the SDTW distanced(xi, xj) is
smaller if the two acoustic eventsxi andxj are from the same
event class than if they are from different classes, an appropri-
ate clustering criterion function is the minimization of the sum
of the squared distances between the elements within a clus-
ter. While finding the optimal partitioning is NP-hard, Lloyd
has proposed an iterative algorithm, commonly referred to as
K-means, that finds a local optimum [6].

3.1. Choice of Seed Values

In K-means it is common practice to choose theK initial cen-
ters uniformly at random from the set of data points. Arthur and
Vassilvitskii have shown that an alternative initialization leads
to a better average value of the criterion function [7]. Theyhave
proven that their so-called K-means++ method isO(logK)-
competitive, i.e. the expected value of the criterion function af-
ter initialization is no more than a factor worse than the opti-
mum value, where this factor is given by8(logK + 2) [7].

The K-means++ initialization works as follows:

1. Setk = 1. Choose the first seed valueck uniformly at
random from the setχ of acoustic events.

2. Compute the SDTW distancesd(ck, xj) between the
chosen eventck and all other acoustic eventsxj , j =
1, . . . , Ntot and store the distances in the vectordmin.

3. Incrementk and choose the next seed valueck ∈ χ with
probability proportional to the distances indmin.

4. Compute the SDTW distances betweenck and all other
acoustic events and replace an entry in the minimum dis-
tance vectordmin if the computed distance is smaller
than the stored value.

5. Goto 3. untilK centers are drawn.

The idea behind this kind of initialization is to prevent elements
of χ to be drawn which are very close to the set of already drawn
seed values. On the other hand, although insignificant outliers
in χ may have a great distance to the set of previously drawn
elements, the probability to draw one of them is small, sincethe
overall number of outliers is per definition small.

The reason for trying to avoid seed values which are close to
each other is that we want to find representatives of as many dif-
ferent classes as possible. It is advantageous to have all acoustic
event classes represented in the setC = {c1, . . . , cK} of seed
values to achieve a high cluster purity in the subsequent cluster
refinement steps.

3.2. Probability of Seed Values from all Classes

As there areE different acoustic event classes in the setχ, at
leastK=E seed values are necessary to have at least one seed
value from each class. The probability of indeed drawing sam-
ples fromE different classes with justE draws, is, however,
pretty low.

Let the random variableDk denote the number of differ-
ent classes afterk draws. Obviously,P (D1=1) = 1, since
the first draw will always yield a representative of a yet unseen
class. For the second draw this first sample has to be removed
leavingN − 1 samples from the already chosen event class and
N(E − 1) from the other classes. If the probability of a sample
to be drawn is the same for all samples, i.e. the common initial-
ization of k-means with draws from a uniform probability, the
probability of having drawn samples fromE different classes
afterE draws is easily computed to be

P (DE=E) =

E−1∏

k=1

N(E − k)

k(N − 1) +N(E − k)
. (1)

ForE = 13 andN = 300 we obtainP (D13=13) = 2.1·10−5 .
The K-means++ initialization significantly raises this prob-

ability. The probability of observingL different classes afterk
draws can be recursively computed by

P (Dk=L) = Pnew(k)P (Dk−1=L−1)

+ Pseen(k)P (Dk−1=L) (2)



with Pnew(k) being the probability of drawing a segment from
a yet unseen class in thek-th draw andPseen(k) the probabil-
ity of drawing a segment from an already seen class. For the
computation of these probabilities we make the assumption that
the distance between samples from the same class is the same
for all samples and is given byd0, while the distance between
samples from different classes is given byd1. Then we find

Pnew(k) =
N [E − (L− 1)]d1

N [E − (L− 1)]d1 + [N(L− 1)− (k − 1)]d0
.

(3)

The numerator is the number of samples in the[E−(L−1)] yet
unseen classes, multiplied by the inter-class distanced1, while
the second term of the denominator is the number of samples
remaining in the already seen classes, multiplied by the intra-
class distanced0. Likewise the probability of drawing an al-
ready seen class is given by

Pseen(k) =
[NL− (k − 1)]d0

[N(E − L)]d1 + [NL− (k − 1)]d0
. (4)

With the initializationP (D1=L) = 1 for L = 1 and zero
for L = 2, . . . , E, the probabilityP (DE=E) can be readily
computed. The expected value E[Dk] of the number of different
classes seen afterk draws is given by

E[Dk] =
E∑

L=1

L · P (Dk=L). (5)
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Figure 2: Comparison between K-means variants (number of
different classes:E = 13)

Figure 2 shows the expected value of different classes seen
afterk draws as a function of the number of drawsk. For K-
means++ we show results for an inter-to-intra class distance ra-
tio of d1/d0 = 2 and10, whereas K-means draws seed values
from a uniform distribution, which corresponds tod1/d0 = 1.
Obviously, K-means++ requires fewer seed points to achievea
certain value of E[DK ] than uniform initialization.

While the analysis in this section has shown that K-
means++ delivers superior seed values compared to uniform
sampling, it is unable to predict the degree of performance ad-
vantage on true data due to the coarse approximation of a con-
stant inter-to-intra class distanced1/d0 which was necessary to
arrive at the analytic results.

3.3. Hierarchical Clustering

The overall computational complexity is dominated by the
SDTW distance computation. From the description of the K-
means++ initialization it can be seen that the required number of
SDTW distance computations for seed selection equalsK ·Ntot.
The number of seed values,K, should therefore be chosen as
small as possible. On the other hand each event class should
be represented in the seed values to achieve a final high cluster
purity, see later experimental results. Therefore,K should be
chosen larger thanE to achieve a value of E[DK ] that is close
toE, even for K-means++.

Subsequently, hierarchical clustering is applied to bringthe
number of clusters down toE. Let Ck denote the set of seed
values merged to thek-th cluster during hierarchical clustering.
Initially, all Ck, k = 1, . . . ,K, contain a single element,ck.
As a measure of the average inter-cluster distanced̃(Ck, Cl),
1 ≤ k, l ≤ K we define:

d̃(Ck, Cl) =
2

|Ck|+ |Cl|

∑

ci∈Ck

∑

cj∈Cl

d(ci, cj) (6)

Note that all required SDTW distances have already been com-
puted during the K-means++ seed selection. Then the two clus-
ters are merged which exhibit the smallest inter-cluster distance.
After each cluster merging the cluster assignment can be iter-
atively updated by iterating between assigning samples to the
closest cluster and recomputing the cluster representative.

4. Experimental Results
We performed experiments on two different databases. The first
is the TIDIGIT [8] database where we used the subset of iso-
lated digits only, consisting of 11 classes with 2464 and 2486
digits in the train and test sets, respectively. This database is
used to verify that our approach to unsupervised digit recogni-
tion is competitive. The second database is the CHIL acoustic
event detection database [9]. It contains 3014 non-stationary
acoustic events from 13 classes recorded in meeting rooms, e.g.
foot steps, knocking, ringing.

We used Mel-frequency cepstral coefficients (MFCCs) as
features which were obtained by the ETSI advanced front-end.
The feature vectors consisted of 13 MFCCs, an autocorrelation
feature and their first- and second-order derivatives.

4.1. Performance Measures

To measure the performance of the proposed approach we de-
fine the cluster purity to be the minimal percentage of incor-
rectly labeled acoustic events among all bijective (one-to-one)
mappingsM(C ↔ E) between theE clustersC and theE
acoustic event classesE . The requirement of bijectivity results
in a more stringent definition of cluster purity than the one often
used, e.g. in [10].

Please note that forE classes faculty ofE mappings exist.
We significantly reduced the average computational complexity
of searching for the optimal mapping by using a recursive tree
traversal algorithm. To this end, we made a first guess of a
mapping and subsequently searched only those tree branches
which could result in lower error rates than the best mapping
found so far.

In the experiments we will also present the normalized mu-
tual information (NMI) as an additional performance measure
(see [10] for details).

4.2. Clustering Results

As the seed selection contains a random component we con-
ducted multiple clustering experiments. For each row in the
subsequent Tables 1 and 2 we carried out a total of3000 clus-
tering experiments and report the average, as well as the best
and worst cluster purity.

With the joint clustering and SDTW approach proposed
here the computational effort is reduced by a factor of
[Ntot(Ntot − 1)/2]/[K · Ntot] compared to the full SDTW dis-
tance computation required in a sequential SDTW and cluster-
ing approach. For 11 draws andNtot = 2464 segments of the
digit database this amounts to a factor of112, while a factor



of 116 of computational savings results with the 13 draws and
3014 segments of the acoustic events database. Since the com-
putational complexity is proportional to the number of draws,
both for K-means and K-means++, the column showing the
number of draws is an indicator of the computational effort of
the corresponding experiment.

Cluster purity[%] NMI [%]
Method Draws Min Max Avg. Avg.

K-means 11 24.72 73.34 48.79 48.75
K-means++ 11 22.44 76.50 51.96 51.75

K-means, HC 22 32.22 81.13 58.33 58.28
K-means++, HC 22 32.31 83.60 60.54 60.90

K-means, HC 33 38.39 85.96 63.02 63.16
K-means++, HC 33 42.09 85.35 64.60 65.45

K-means, HC 165 60.15 94.28 82.80 80.36
K-means++, HC 165 63.27 95.41 83.25 81.86

K-means, HC 330 75.37 95.58 89.22 85.91
K-means++, HC 330 69.28 95.86 89.54 86.74

Table 1: Clustering results on speech data

Tables 1 and 2 show the clustering results for speech data
and acoustic event data, respectively. As can be seen, cluster pu-
rity on the speech database is much higher than on the acoustic
events database. Actually, the latter is much more challenging,
since the recordings are reverberated, the number of different
classes is higher (13 vs. 11), and the average duration of the
segments is smaller. Additionally, acoustic events have the dis-
advantage that samples from the same event class may have very
different lengths.

Cluster purity[%] NMI [%]
Method Draws Min Max Avg. Avg.

k-means 13 12.71 48.31 28.68 32.47
k-means++ 13 15.46 48.27 32.12 34.76

k-means, HC 26 14.40 50.20 32.76 37.20
k-means++, HC 26 18.35 53.55 35.75 39.21

k-means, HC 39 16.82 51.96 35.27 39.82
k-means++, HC 39 21.13 52.89 38.13 42.02

k-means, HC 195 29.06 58.99 46.39 52.06
k-means++, HC 195 31.95 63.60 47.84 55.35

k-means, HC 390 39.35 61.68 49.11 57.00
k-means++, HC 390 37.23 58.93 48.90 58.42

Table 2: Clustering results on acoustic event data

In both tables it can be observed that the cluster purity in-
creases with the number of draws. This, however, comes at the
price of an increased computational effort which rises propor-
tional with the number of draws. No significant further increase
in purity was, however, observed if the the number of seed val-
ues was increased beyond the largest value in the tables.

As can be seen in the tables, K-means++ in general out-
performs K-means, both in terms of the cluster purity and the
normalized mutual information performance measure. On the
speech database it can be observerd that K-means catches up
to some extent if there are many more seed values than classes
(K ≫ E). The computational complexity of both approaches
is similar. K-means requires no distance calculations for draw-
ing theK centers, but it needsK · Ntot distance calculations
for assigning theNtot segments to theK clusters. K-means++
requiresK ·Ntot distances for drawing theK centers and in par-
allel assigns theNtot segments without additional calculations.

4.3. Speech Recognition Experiment

To gain an intuitively perhaps easier to interpret assessment of
the clustering quality than the cluster purity measure, we used
two exemplary clustering results to train digit Hidden Markov

Models (HMMs) and tested them on the test data set of the digit
database (Tab. 3, “First training“). Additionally, the trained
HMMs were used to recognize the training data and the recog-
nition results were in turn used to improve the clustering, which
was then input to a second training (Tab. 3, “Iter. training”).
This increased the cluster purity of the training data and the
word accuracy on the test data. As can be seen, unsupervised
training is able to approach the word accuracy of supervised
training.

Cluster purity[%] Word accuracy[%]
First training Iter. training First training Iter. training

80.2 83.61 83.75 84.11
93.50 97.89 99.60 99.72

Perfect clustering (supervised) 99.88

Table 3: Automatic speech recognition using clustering results

5. Conclusions
We have presented a new approach for learning acoustic event
classes in an unsupervised manner. It utilizes segmental dy-
namic time warping to compare feature vector time-series and
in parallel clusters the segments into categories. The approach
has the advantage that its computational complexity increases
only linearly with the number of utterances and thus enables
the clustering of large data sets. Cluster seed value selection
via K-means++ requires particularly few seed values to capture
representatives of all classes, which eventually pays off in im-
proved cluster purity.
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