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Abstract

In this paper we propose to jointly consider Segmental Dy-
namic Time Warping and distance clustering for the unsuper-
vised learning of acoustic events. As a result, the computa-
tional complexity increases only linearly with the dababsize
compared to a quadratic increase in a sequential setupegwher
all pairwise SDTW distances between segments are computed
prior to clustering. Further, we discuss options for seddeva
selection for clustering and show that drawing seeds with a
probability proportional to the distance from the alreadgveh
seeds, known as K-means++ clustering, results in a significa
higher probability of finding representatives of each of tine
derlying classes, compared to the commonly used draws from a
uniform distribution. Experiments are performed on an atiou
event classification and an isolated digit recognition tasiere

on the latter the final word accuracy approaches that of super
vised training.

Index Terms. unsupervised, clustering, acoustic events

1. Introduction

Acoustic event classification is concerned with deterngrie
identity of sounds and their temporal position in audio sig-
nals. This information can be used to draw conclusions about
the physical environment or the activity that has produded t
sound. Such an acoustic scene analysis may be used for au-
tomatic highlight detection in videos, for surveillancesks,
ambient assistant living devices, or smart environmengeim
eral. As it depends very much on the application which adoust
events are relevant, it is desirable to learn the events iman
supervised fashion to avoid the need for the costly cotheotif
application-specific labeled training data.

There are at least two major approaches to unsupervised
pattern discovery in audio or speech data. The first employs
machine learning techniques, such as non-negative matix f
torization (NMF), to find recurrent basic building blockshiah
in the case of speech could be related to phonemes [1]. A criti
cal issue is how to capture the temporal correlation of tha,da
as NMF per se provides no handle for this. While several exten
sions of NMF have been proposed in this direction, the second
approach is more directly addressing the sequence chaddcte
the input data: Segmental dynamic time warping (SDTW) has
been proposed to discover recurring speech patterns i audi
streams. Using the matrix of pairwise distances between seg
ments computed by SDTW, graph clustering techniques are ap-
plied to identify recurrent temporal patterns [2]. The segtn
wise time warping method from [3] extends the set of allowed
warping paths for an elaborate time-series matching atthe e
pense of an increased computational complexity.

While unsupervised pattern discovery by SDTW was
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shown to achieve high cluster purity, a major drawback are it
high computational costs, which renders the methods quickl
unfeasible for large data sets. Methods have therefore teen
veloped to address this issue. In [4] an approach called “un-
bounded dynamic time warping” was proposed which utilizes
so-called synchronization points, i.e. alignment pointgch
restrict the search space and thus avoid the exhaustive com-
putation of the complete distance matrix. Additionallycdb
restrictions, that do not allow for strict insertions or etens,

are applied to further restrict the number of warp paths to be
evaluated. An overview of sequence matching approaches can
be found in [5].

In the following we will present an approach that greatly re-
duces the computational costs of SDTW-based pattern discov
ery. We argue that the computation of the complete matrix of
pairwise distances between all,: audio segments is unneces-
sary, as we will never carry out a full search to obtain thé-opt
mal clustering, because this is NP hard. However, if subuati
greedy algorithms are applied, it is advantageous to centie
steps of distance computation by SDTW and clustering t@geth
and compute only those distances that are actually reqgfored
clustering. This will bring down the computational comptgx
from an order ofO(N2,) operations t@)(K - Nit), Where K
is the number of seed values of the clustering, which is much
smaller thanNVy:. Further we will investigate the use of the K-
means++ algorithm for the selection of the seed values,twhic
will be shown to result in a particularly small number of seed
values required to achieve a high probability of choosinges
value from each of the different acoustic event classes.

The paper is organized as follows. We will first briefly de-
scribe SDTW in Section 2 and then discuss our clustering ap-
proach, in particular the choice of seed values and thedoter
tion with SDTW. In the experiments section we quantify the
computational savings and show that a clever choice of seed
values leads to improved cluster purity, both on a speectaand
acoustic event database. The paper is finished with conalsisi
drawn in Section 5.

2. Segmental Dynamic Time War ping

We consider the unsupervised learning of acoustic patteets

& be the set of acoustic event classes, whose cardin@lity

|€], i.e. the number of different event classes, is assumed to be
known. We are given a databage= {z1,...,Zng} Of Not
recordings of acoustic events with N events per category,
i.e..Nwt=N - E.

Our goal is to partition the database inkbclusters such
that each cluster ideally contains only the samples of opatev
class. In principle this can be solved by computing a sintylar
measure among all pairs of segments and conduct hierakrchica
clustering until the target number @& clusters has been ob-
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Figure 1: lllustration of segmental dynamic time warping

tained. Dynamic time warping (DTW) has been shown to be
a most successful approach to obtain a single distance value
describing the similarity of two time series of feature st
Note that the individual acoustic events can be of very diffe
ent length, even if from the same class. Consider for exam-
ple a ringing tone, whose length may vary between less than a
second and several seconds. For this reason it is necessary t
extend DTW towards the segmental DTW (SDTW) to find re-
curring subsequences, as proposed by [2]. SDTW consists of
two main components: a local alignment procedure which pro-
duces multiple warp paths, and a path trimming method which
retains only the lower distortion regions of an alignmenhpa

In Fig. 1 an example is depicted. The black dotted lines in-
dicate the constraints introduced to restrict the alloeablapes
that a warp path can take. Within each diagonal region DTW is
applied to find an alignment path (blue lines in Fig. 1). Ainal
a path refinement is carried out on each local alignment path
to identify the length-constrained minimum average (LCMA)
distortion fragment (red line in Fig. 1). The LCMA is that sub
sequence of the alignment path of a certain minimum length
which achieves a minimum value of the distance measure, see
[2] for details. This so found value of the distance measure
is then taken as the distandér;, z;) between the two acous-
tic eventsz; andz;. In [4], the normalized inner product has

been proposed as local distance measure between two feature

vectors. This is in line with our own findings, where it consis
tently delivered better final clustering results than thellEian
or Mahalanobis distance.

A problem of SDTW, that has limited its applicability, is
its large computational complexity. The distance mabix=
{d(zi,z;)}, 1 < 4,5 < Ny is input to the subsequent clus-
tering stage. Depending on the clustering method chosen, th
availability of the complete distance matrix is however net-
essary, as will be explained next.

3. Clustering Approach

With the assumption that the SDTW distandéz;, z;) is
smaller if the two acoustic evenis andz; are from the same
event class than if they are from different classes, an gppro
ate clustering criterion function is the minimization oéthum

of the squared distances between the elements within a clus-
ter. While finding the optimal partitioning is NP-hard, Lkby
has proposed an iterative algorithm, commonly referredsto a
K-means, that finds a local optimum [6].

3.1. Choiceof Seed Values

In K-means it is common practice to choose fianitial cen-
ters uniformly at random from the set of data points. Artmaot a
Vassilvitskii have shown that an alternative initializatileads
to a better average value of the criterion function [7]. Thaye
proven that their so-called K-means++ methodliflog K)-
competitive, i.e. the expected value of the criterion fiorcaf-
ter initialization is no more than a factor worse than the-opt
mum value, where this factor is given Bylog K + 2) [7].

The K-means++ initialization works as follows:

1. Setk = 1. Choose the first seed valdg uniformly at
random from the set of acoustic events.

2. Compute the SDTW distance&ci, z;) between the
chosen event;, and all other acoustic events;, j =
1,..., Nt and store the distances in the veathyi,.

3. Increment: and choose the next seed valtiec x with
probability proportional to the distancesdin.-

4. Compute the SDTW distances betwegrand all other
acoustic events and replace an entry in the minimum dis-
tance vectordmin if the computed distance is smaller
than the stored value.

5. Goto 3. untilK centers are drawn.

The idea behind this kind of initialization is to preventrakents

of x to be drawn which are very close to the set of already drawn
seed values. On the other hand, although insignificanteostli

in x may have a great distance to the set of previously drawn
elements, the probability to draw one of them is small, sthee
overall number of outliers is per definition small.

The reason for trying to avoid seed values which are close to
each other is that we want to find representatives of as mé&ny di
ferent classes as possible. Itis advantageous to haveoaiic
event classes represented in the(set {ci,...,cx} of seed
values to achieve a high cluster purity in the subsequesteiu
refinement steps.

3.2. Praobability of Seed Valuesfrom all Classes

As there areF different acoustic event classes in the geht
leastK'=F seed values are necessary to have at least one seed
value from each class. The probability of indeed drawing-sam
ples from E different classes with jusk draws, is, however,
pretty low.

Let the random variablé®; denote the number of differ-
ent classes aftek draws. Obviously,P(D:1=1) = 1, since
the first draw will always yield a representative of a yet @mse
class. For the second draw this first sample has to be removed
leaving N — 1 samples from the already chosen event class and
N(E — 1) from the other classes. If the probability of a sample
to be drawn is the same for all samples, i.e. the common linitia
ization of k-means with draws from a uniform probabilityeth
probability of having drawn samples frofi different classes
after E draws is easily computed to be

P(Ds=FE) = 1:[ - N(E - k)

(
inE—R W
For E = 13 andN = 300 we obtainP(D;3=13) = 2.1-107°.

The K-means++ initialization significantly raises thisipro
ability. The probability of observind. different classes aftéer
draws can be recursively computed by

P(Dy=L) = Prea(k)P(Dy_1=L—1)

+ PreeK)P(Dy—1=L) @



with Prew(k) being the probability of drawing a segment from
a yet unseen class in thieth draw andPseed k) the probabil-

ity of drawing a segment from an already seen class. For the
computation of these probabilities we make the assumptiain t

Subsequently, hierarchical clustering is applied to btiheg
number of clusters down t&. Let C;, denote the set of seed
values merged to thie-th cluster during hierarchical clustering.
Initially, all Cx, ¥ = 1,..., K, contain a single elementy.

the distance between samples from the same class is the sameAs a measure of the average inter-cluster distaﬁ&, C),

for all samples and is given by, while the distance between
samples from different classes is givendly Then we find
N[E — (L —1)]ds
N[E — (L —1)}d1 + [N(L —1) — (k—1)]do"
®3)
The numerator is the number of samples in[the- (L —1)] yet
unseen classes, multiplied by the inter-class distahcevhile
the second term of the denominator is the number of samples
remaining in the already seen classes, multiplied by tha-int
class distanceé. Likewise the probability of drawing an al-
ready seen class is given by
[NL — (k —1)]do
Pseed k) = . (4
seer(K) [N(E — L)]d1 + [NL — (k — 1)]do @
With the initialization P(D1=L) = 1 for L = 1 and zero
for L = 2,..., E, the probabilityP(Dg=F) can be readily
computed. The expected valuglk, ] of the number of different
classes seen aftérdraws is given by
E
E[Di] = > L- P(Dy=L).

L=1

Pnew(ki) -
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Figure 2: Comparison between K-means variants (number of
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Figure 2 shows the expected value of different classes seen
after k draws as a function of the number of draius For K-
means++ we show results for an inter-to-intra class digtaac
tio of d1/do = 2 and10, whereas K-means draws seed values
from a uniform distribution, which correspondsdg/do = 1.
Obviously, K-means++ requires fewer seed points to achéeve
certain value of ED k] than uniform initialization.

While the analysis in this section has shown that K-
means++ delivers superior seed values compared to uniform
sampling, it is unable to predict the degree of performante a
vantage on true data due to the coarse approximation of a con-
stant inter-to-intra class distande/do which was necessary to
arrive at the analytic results.

3.3. Hierarchical Clustering

The overall computational complexity is dominated by the
SDTW distance computation. From the description of the K-
means++ initialization it can be seen that the required rarrob
SDTW distance computations for seed selection eqgldaldo.
The number of seed value&], should therefore be chosen as

1 <k,l < K we define:

2

=5 d(cs, c;

ICx| + |Ci] ;k ;l (cir5)
Note that all required SDTW distances have already been com-
puted during the K-means++ seed selection. Then the twe clus
ters are merged which exhibit the smallest inter-clustetadice.
After each cluster merging the cluster assignment can be ite
atively updated by iterating between assigning samplebdo t
closest cluster and recomputing the cluster represeatativ

d(Cy, C) (6)

4. Experimental Results

We performed experiments on two different databases. Téte fir
is the TIDIGIT [8] database where we used the subset of iso-
lated digits only, consisting of 11 classes with 2464 and6248
digits in the train and test sets, respectively. This dataha
used to verify that our approach to unsupervised digit reog
tion is competitive. The second database is the CHIL aoousti
event detection database [9]. It contains 3014 non-sttyon
acoustic events from 13 classes recorded in meeting rooms, e
foot steps, knocking, ringing.

We used Mel-frequency cepstral coefficients (MFCCs) as
features which were obtained by the ETSI advanced front-end
The feature vectors consisted of 13 MFCCs, an autocorelati
feature and their first- and second-order derivatives.

4.1. Performance Measures

To measure the performance of the proposed approach we de-
fine the cluster purity to be the minimal percentage of incor-
rectly labeled acoustic events among all bijective (orefte)
mappingsM (C «+ &) between theE clustersC and theFE
acoustic event classés The requirement of bijectivity results
in a more stringent definition of cluster purity than the oftero
used, e.g. in [10].

Please note that fat classes faculty oF’ mappings exist.
We significantly reduced the average computational conitglex
of searching for the optimal mapping by using a recursive tre
traversal algorithm. To this end, we made a first guess of a
mapping and subsequently searched only those tree branches
which could result in lower error rates than the best mapping
found so far.

In the experiments we will also present the normalized mu-
tual information (NMI) as an additional performance measur
(see [10] for detalils).

4.2. Clustering Results

As the seed selection contains a random component we con-
ducted multiple clustering experiments. For each row in the
subsequent Tables 1 and 2 we carried out a tot8D66 clus-
tering experiments and report the average, as well as the bes
and worst cluster purity.

With the joint clustering and SDTW approach proposed

small as possible. On the other hand each event class should here the computational effort is reduced by a factor of

be represented in the seed values to achieve a final higleclust
purity, see later experimental results. Therefdkeshould be
chosen larger thaf' to achieve a value of [P x| that is close

to E, even for K-means++.

[Neot(Nwot — 1)/2]/[K - Niot] compared to the full SDTW dis-
tance computation required in a sequential SDTW and cluster
ing approach. For 11 draws add, = 2464 segments of the
digit database this amounts to a factor1id®, while a factor



of 116 of computational savings results with the 13 draws and
3014 segments of the acoustic events database. Since the com-
putational complexity is proportional to the number of dsaw
both for K-means and K-means++, the column showing the
number of draws is an indicator of the computational effdrt o
the corresponding experiment.

Cluster purity[%)] NMI [%)]

Method Draws | Min | Max [ Avg. Avg.
K-means 11 2472 | 73.34 | 48.79 48.75
K-means++ 11 22.44 | 76.50 | 51.96 51.75
K-means, HC 22 32.22 | 81.13 | 58.33 58.28
K-means++, HC 22 32.31 | 83.60 | 60.54 60.90
K-means, HC 33 38.39 | 85.96 | 63.02| 63.16
K-means++, HC| 33 42.09 | 85.35| 64.60| 65.45
K-means, HC 165 | 60.15| 94.28 | 82.80| 80.36
K-means++, HC| 165 | 63.27 | 95.41| 83.25| 81.86
K-means, HC 330 75.37 | 95.58 | 89.22 85.91
K-means++, HC| 330 69.28 | 95.86 | 89.54 86.74

Table 1: Clustering results on speech data

Tables 1 and 2 show the clustering results for speech data
and acoustic event data, respectively. As can be seerercpust
rity on the speech database is much higher than on the acousti
events database. Actually, the latter is much more chétegng
since the recordings are reverberated, the number of eliffer
classes is higher (13 vs. 11), and the average duration of the
segments is smaller. Additionally, acoustic events hagedlis-
advantage that samples from the same event class may have ver
different lengths.

Cluster purity[%] NMI [%]

Method Draws | Min | Max [ Avg. Avg.
k-means 13 12.71 | 48.31 | 28.68 32.47
k-means++ 13 15.46 | 48.27 | 32.12 34.76
k-means, HC 26 14.40 | 50.20 | 32.76 37.20
k-means++, HC 26 18.35 | 53.55 | 35.75 39.21
k-means, HC 39 16.82 | 51.96 | 35.27 | 39.82
k-means++, HC 39 21.13 | 52.89 | 38.13 42.02
k-means, HC 195 29.06 | 58.99 | 46.39 52.06
k-means++, HC| 195 31.95 | 63.60 | 47.84 55.35
k-means, HC 390 39.35| 61.68 | 49.11 57.00
k-means++, HC| 390 37.23 | 58.93 | 48.90 58.42

Table 2: Clustering results on acoustic event data

In both tables it can be observed that the cluster purity in-
creases with the number of draws. This, however, comes at the
price of an increased computational effort which rises prop
tional with the number of draws. No significant further irecse
in purity was, however, observed if the the number of seed val
ues was increased beyond the largest value in the tables.

As can be seen in the tables, K-means++ in general out-
performs K-means, both in terms of the cluster purity and the
normalized mutual information performance measure. On the

speech database it can be observerd that K-means catches up

to some extent if there are many more seed values than classes
(K > FE). The computational complexity of both approaches

is similar. K-means requires no distance calculations fane

ing the K centers, but it need& - N distance calculations

for assigning theVi,: segments to thé& clusters. K-means++
requiresk - Nyt distances for drawing th& centers and in par-

allel assigns théVie: segments without additional calculations.

4.3. Speech Recognition Experiment

To gain an intuitively perhaps easier to interpret assessuofe
the clustering quality than the cluster purity measure, sedu
two exemplary clustering results to train digit Hidden Mark

Models (HMMs) and tested them on the test data set of the digit
database (Tab. 3, “First training“). Additionally, the itrad
HMMs were used to recognize the training data and the recog-
nition results were in turn used to improve the clusteriniiciv

was then input to a second training (Tab. 3, “lter. training”
This increased the cluster purity of the training data ared th
word accuracy on the test data. As can be seen, unsupervised
training is able to approach the word accuracy of supervised
training.

Cluster purity[%] Word accuracy%)]

First training | lter. training First training | Iter. training
80.2 83.61 83.75 84.11
93.50 97.89 99.60 99.72

[ Perfect clustering (supervised) 99.88 |

Table 3: Automatic speech recognition using clusteringltes

5. Conclusions

We have presented a new approach for learning acoustic event
classes in an unsupervised manner. It utilizes segmental dy
namic time warping to compare feature vector time-series an
in parallel clusters the segments into categories. Theocagpr

has the advantage that its computational complexity ira®a
only linearly with the number of utterances and thus enables
the clustering of large data sets. Cluster seed value gmiect
via K-means++ requires particularly few seed values towrapt
representatives of all classes, which eventually paysnoifin-
proved cluster purity.
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