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Abstract

In this work, a splitting and weighting scheme that allows for

splitting a Gaussian density into a Gaussian mixture density

(GMM) is extended to allow the mixture components to be ar-

ranged along arbitrary directions. The parameters of the Gaus-

sian mixture are chosen such that the GMM and the original

Gaussian still exhibit equal central moments up to an order of

four. The resulting mixtures’ covariances will have eigenval-

ues that are smaller than those of the covariance of the original

distribution, which is a desirable property in the context of non-

linear state estimation, since the underlying assumptions of the

extended KALMAN filter are better justified in this case. Ap-

plication to speech feature enhancement in the context of noise-

robust automatic speech recognition reveals the beneficial prop-

erties of the proposed approach in terms of a reduced word error

rate on the Aurora 2 recognition task.

Index Terms: density splitting, moment matching

1. Introduction

The application of model-based speech feature enhancement to

the prominent noise-robustness problem of today’s automatic

speech recognizer (ASR) systems has gained considerable in-

terest in recent years. Thereby, conditional BAYESian estima-

tion is employed to infer the uncorrupted speech feature vectors

from the corrupted observations based on a priori models of the

cepstral speech feature vectors xt and the noise-only feature

vectors nt and a highly non-linear observation model relating

the two to the corrupted observations yt [1]:

yt = D log

(

eD
+
xt + eD

+
nt + 2αte

D
+ (xt+nt)

2

)

. (1)

TherebyD andD+ denote the discrete-cosine transform (DCT)

matrix and its pseudo-inverse, respectively. Several approxima-

tions have been proposed to model the observation probability

density p(yt|xt,nt). The most prominent and at the same time

simplest approach neglects any phase difference between the

speech and the noise signal. However, it is well known and

has already been verified experimentally that the more accu-

rate model of (1), which includes the phase factor αt, results

in improved performance [2]. Since a numerical evaluation

of the occurring integrals to obtain the observation probability

p(yt|xt,nt) is computationally very demanding, it usually is

still approximated by a Gaussian density.

The two most prominent filters for non-linear estimation

problems are the unscented [3] and the extended KALMAN fil-

ter [4]. The unscented filter determines the mean and covari-

ance of this Gaussian by means of so-called sigma points, which

are drawn from a joint Gaussian a priori density of xt and nt

and later on propagated through the non-linearity. In contrast,

the extended KALMAN filter utilizes lower-order terms of the

Taylor-series expansion of the non-linearity to obtain estimates

of the mean and the covariance and in general is very sensitive

to the choice of the expansion vector. But it is only when the

spectral radius of the covariance matrix of the joint Gaussian

prior is sufficiently small that the underlying assumptions are

approximately valid.

Driven by this idea, ALSPACH and SORENSON proposed

to model the original a priori distribution by a Gaussian

mixture model where the individual mixtures exhibit smaller

eigenvalues than the original distribution [5]. Only recently,

MERWE et al. [6] and FAUBEL et al. [7] adopted this ap-

proach. While MERWE et al. applied a weighted expectation-

maximization algorithm to samples drawn from the a priori den-

sity to obtain the parameters of a GMM, FAUBEL et al. pro-

posed to iteratively increase the number of mixture components

by splitting a selected Gaussian along one of the eigenvectors of

the corresponding covariance. The mixture component to split

and the eigenvector the split is performed along is thereby deter-

mined by the degree of non-linearity [7]. Both approaches can

be considered computationally expensive and thus, to the best

of our knowledge, none or very few attempts have been made

to apply the concept to the problem of speech feature enhance-

ment as is done here. Further, we will extend the theory to splits

along arbitrary directions, not restricted to those defined by the

eigenvectors of the covariance matrix.

The paper begins with a short review of approximating

a GMM by a single Gaussian by means of minimizing their

KULLBACK-LEIBLER divergence. Since the same criterion

cannot be applied to split a Gaussian into a GMM without

any constraints on the parameter set, a splitting and weighting

scheme which allows for multiple splits in arbitrary directions

is introduced next, followed by a discussion on the sensitivity

of the choice of the parameters. The splitting and weighting

scheme is then applied to model-based speech feature enhance-

ment and its performance is evaluated by means of recognition

results on the Aurora 2 database [8].

2. Merging a GMM into a single Gaussian

Given a Gaussian mixture probability density p(z), z ∈ R
D

p(z) =

M−1
∑

m=0

wmpm(z) =

M−1
∑

m=0

wmN(z; µm,Σm) , (2)

where wm, µm and Σm denote the weight, the mean and the

covariance of the m-th Gaussian mixture component pm(z),
m ∈ {1, ..,M}, respectively, merging the GMM to a single

Gaussian q(z)=N(z; µ̃, Σ̃) usually refers to finding its mean

µ̃ and covariance Σ̃ such that the KULLBACK-LEIBLER (KL)

divergence between p(z) and q(z) is minimized, resulting in

µ̃ =
M−1
∑

m=0

wmµm (3)

Σ̃ =
M−1
∑

m=0

wmΣm+
M−1
∑

m=0

wm(µm−µ̃)(µm−µ̃)′, (4)



where (·)′ denotes the matrix/vector transpose operator. The

covariance Σ̃ can thereby be regarded as being composed of

a ”within class” term SW =
∑M−1

m=0 wmΣm and a ”between

class” term SB=
∑M−1

m=0 wm(µm−µ̃)(µm−µ̃)′. This approach
is also referred to as moment matching for obvious reasons.

3. Splitting a Single Gaussian into a GMM

While merging a GMM into a single Gaussian by minimizing

their KL-divergence is common practice, the objective here is

the opposite: splitting a Gaussian into a GMM consisting of an

arbitrary number of mixture components M . A splitting and a

weighting scheme which allow for multiple splits in arbitrary

directions are described next. To keep the objective of minimiz-

ing the KL-divergence, both schemes are driven by the key idea

of matching the moments of the GMM to that of the Gaussian.

3.1. Splitting in an Arbitrary Direction

Splitting the Gaussian q(z) = N(z; µ̃, Σ̃) into a GMM p(z)
with M = 2K+1 components along an arbitrary direction

ul ∈ R
D can be achieved by first shifting the mean 2K-times

and second transforming the covariance of the shifted density.

Arranging the means of the M mixture components symmet-

rically with respect to µ̃ along ul with an equidistant spacing

while transforming all covariances in the same manner results

in a GMM that is fully specified by the parameter set

µ0 = µ̃, Σ0, w0,
µk = µ̃+ ηkul, Σk = Σ0, wk,
µK+k = µ̃− ηkul, ΣK+k = Σk, wK+k = wk,

(5)

where k∈{1, .., K}. All weights are positive and normalized

such that w0+
∑2K

k̃=1 wk̃ =1. The parameter η ∈ R≥0 deter-

mines the distance between two adjacent means in terms of the

length of the vector ul.

The symmetric setup ensures the first central moment of the

Gaussian and the GMM to match. Applying (4) and solving for

Σ0 to also match the second central moment yields

Σ0 = Σ̃− βulu
′
l, β = 2η2

K
∑

k=1

wkk
2, (6)

where the parameter β ∈ R≥0 controls the covariance reduc-

tion, which certainly has to be a function of the mean displace-

ment η if the moments have to match. Calling for Σ0 to be

symmetric and non-negative definite poses constraints on either

the length of ul or β. While the symmetry is obviously given

by any vector ul ∈ R
D , the non-negative definiteness property

z
′
(

Σ̃− βulu
′
l

)

z ≥ 0 ∀z ∈ R
D

(7)

is preserved only by vectors in a certain subset of RD. Ex-

pressing the covariance Σ̃ in terms of an orthonormal matrix

composed of its eigenvectors V = [v1, ..., vD] and a diagonal

matrix composed of its eigenvalues Λ = diag([λ1, ..., λD]),
one obtains

z
′
(

VΛV
′ − βulu

′
l

)

z ≥ 0 ∀z ∈ R
D, (8)

which is equivalent to

z̃
′
(

I− βΛ− 1
2V

′
ulu

′
lVΛ

− 1
2

)

z̃ ≥ 0 ∀z̃ ∈ R
D, (9)

with z̃ = Λ
1
2V′z, since Λ

1
2 V′ is full-rank.

The matrix I − β(Λ− 1
2V′ul)(Λ

− 1
2V′ul)

′ in

turn is non-negative definite if the eigenvalues of

β(Λ− 1
2V′ul)(Λ

− 1
2 V′ul)

′ are smaller than or equal to

one. Assuming without loss of generality that β is bound to

the interval [0, 1], non-negative definiteness can be ensured by

normalizing the vector ul by the square root of the maximum

eigenvalue of (Λ− 1
2V′ul)(Λ

− 1
2 V′ul)

′, which is just the

length of the vector Λ− 1
2V′ul. The normalized vector ŭl is

thus given by

ŭl =
ul

√

(Λ− 1
2 V′ul)′(Λ

− 1
2V′ul)

=
ul

√

u′
lΣ̃

−1
ul

. (10)

Note that if ul coincides with an arbitrary eigenvector vd of Σ̃,

ŭl turns into ŭl =
√
λdvd/||vd|| .

3.2. Simultaneous Splitting in Multiple Directions

Extension to a simultaneous split in L arbitrary directions

u1, ...,uL can be carried out in a similar fashion. The parame-

ters of the resulting GMM consisting ofM = 2KL+1mixture

components are given by

µ0 = µ̃, Σ0 = Σ̃− β
∑L

l=1 ulu
′
l, w0

µ
l
k = µ̃+ ηkul, Σl

k = Σ0, wl
k

µ
l
K+k = µ̃− ηkul, Σ

l
K+k = Σl

k, wl
K+k=wl

k,
(11)

where l ∈ {1, .., L} and k ∈ {1, .., K}. All split directions ul

again have to be normalized, this time by the square root of

the maximum eigenvalue of
∑L

l=1(Λ
− 1

2V′ul)(Λ
− 1

2 V′ul)
′ to

preserve the non-negative definiteness of all covariances.

Applying (4) to match the second central moment calls for
L
∑

l=1

ulu
′
l

[

β − 2η2
K
∑

k=1

wl
kk

2

]

!
= 0, (12)

which can simply be met for an arbitrary number of split direc-

tions L if the weights are chosen to be independent of the index

l. The parameter η determining the displacement of the mix-

ture means and the parameter β controlling the change in the

covariances are thus again (compare (6)) related by

β = 2η2
K
∑

k=1

wl
kk

2. (13)

Since the normalization of the split directions requires 0≤β≤1,
the mean shift η will be bound to η ∈ [0, ηmax], which in general
will depend on L and K. If the weights are independent of η,
a closed-form solution for the upper bound ηmax can be derived

from (13). However, if the weights depend on η, a closed-form
solution usually does not exist, as will be outlined next.

3.3. Weighting Scheme

Equation (13) relates the covariance reduction parameter β
to the mean shift η and the chosen weights wl

k. Weight-

ing schemes where the center weight w0 is specified and

the remaining probability mass is equally distributed among

the remaining 2KL non-center mixtures to satisfy w0 +
2
∑L

l=1

∑K

k=1 w
l
k = 1 are quite common [3]. However, since

we split a Gaussian (2K+1)-times along a specified direction

ul, assigning the same weight to mixtures that are close to the

mean µ̃ and those that are further away from it may not be an

appropriate choice. Instead, we assign each mixture compo-

nent pm(z) a weight that is proportional to the likelihood of its

shifted mean under the initial Gaussian q(z) as

w0 =
1

C
γ, wl

k = wl
K+k =

1

C
e−

1
2
k2η2

u
′

l
Σ̃

−1
ul , (14)

with the normalization constant C ∈ R>0. The parameter γ
determines how much weight is assigned to the centered mix-

ture component and moreover controls the higher moments, as

will be utilized later. Since the weights represent probabilities,

γ thereby is constrained to be ∈ R≥0, as opposed to the un-

scented filter [3] where also negative center weights may be



considered. Since the weights are also required to be indepen-

dent of l to meet (12) for an arbitrary L, we further require

u′
lΣ̃

−1
ul = c, c ∈ R>0 ∀l ∈ {1, .., L}. Both non-negative

definiteness and weights independent of l can be achieved by

normalizing ul according to

ŭl =
ul

√

u′
lΣ̃

−1
ul

(15)

first and compute the non-zero eigenvalues ν1, ..., νr, r ≤
min{L,D} of the matrix

∑L

l=1(Λ
− 1

2V′ŭl)(Λ
− 1

2 V′ŭl)
′ af-

terwards. The final normalization step is then given by

˘̆ul =
√
c ŭ, c = 1/max

r
{νr}. (16)

If all ul coincide with directions of the eigenvectors of Σ̃, i.e.,

u′
lvi 6= 0 and u′

lvj = 0 ∀j 6= i, j ∈ {1, .., D} and a particular

i ∈ {1, .., D}, c becomes the reciprocal of the maximum num-

ber of vectors ul pointing in direction of the same eigenvector.

The parameter γ introduced in (14) can either be set heuris-

tically or, if the splits are performed along eigenvectors of Σ̃, be

determined such that the fourth moment of the GMM matches

the fourth moment of the Gaussian. However, with the gener-

alized raw moment of order four of a random vector z given

by E[zz′ ⊗ zz′] (see [9]), where ⊗ denotes the KRONECKER

product, matching the fourth moment would require

Eq(z)[zgzhzizj ] =

M−1
∑

m=0

wmEpm(z)[zgzhzizj ] (17)

to hold for all possible combination of g, h, i, j ∈ {1, .., D} of

the vector z. Though the expectation values can be computed

by applying ISSERLIS theorem [10] for any tuple (g, h, i, j), a
single scalar γ cannot fulfill (17) for all tuples. Focusing on the

case where g=h=i=j, Eq. (17) calls for
(

K
∑

k=1

wl
kk

2

)2

− 1

6

K
∑

k=1

wl
kk

4 !
= 0. (18)

Note that the above constraint on the center weight w0 applies

to any weighting scheme where the weights are independent of

a particular split direction ul. Using the exponential weighting

scheme (14) and solving for γ results in

γopt = 6

(

K
∑

k=1

k2e−
1
2
k2η2c

)2

K
∑

k=1

k4e−
1
2
k2η2c

− 2L

K
∑

k=1

e−
1
2
k2η2c, (19)

which, dependent on L andK, may be negative and as such not

a valid solution. Thus, the additional non-negativity constraint

on γ may keep the fourth moments of the GMM and the Gaus-

sian from matching. Compensation of this shortcoming by, e.g.,

a fixed non-negative γ and a proper choice of η may also be dif-

ficult, since η, in addition, has to be chosen such that 0≤β≤1 to
ensure non-negative definiteness of the covariances. Its bound

ηmax can, in general, not be determined analytically, however,

may be determined graphically, as it is shown in Fig. 1 for γ=1
and γ=γopt for L=1 and K∈{1, .., 3} .

The choice of η may be considered to be subject to a

trade-off between within and between class contribution to the

merged/matched covariance Σ̃. However, the major aim of the

proposed splitting scheme is not to find a shape preserving rep-

resentation of the original Gaussian distribution, but to reduce

the influence of the non-linearity on the Taylor-series expansion

– which may also motivate γ 6=γopt to be chosen, regardless of a
valid solution. Thus, η would have to be chosen large (β close

to one) to generate mixture components that are individually as

concentrated as possible.
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Figure 1: The covariance scaling factor β as a function of η
according to (13) with γ=1 (solid lines) and γ=γopt (dashed
lines) for L = 1 and K ∈ {1, .., 3}; η is allowed to be of the

subset {η∈R≥0|0 ≤ β ≤ 1}
4. Application to Model-based Speech

Feature Enhancement

Application of the proposed splitting scheme to the model-

based speech feature enhancement given in [2] calls for only

slight modifications. There, a switching linear dynamic model

has been used as a priori model of speech and noise. Denot-

ing the regime variable indicating the active dynamic model at

time instant t by st, the splitting scheme will independently be

applied after the time-update step to all predictive Gaussian dis-

tributions p(xt,nt|y1:t−1, st=j), j ∈ [1, J ]. This is followed
by a total of J(2KL+1) measurement-update steps, here car-

ried out by the iterated extended KALMAN filter as given in [2]

and denoted by IEKF-α. It is only after all measurement update

steps have been performed that we apply the moment match-

ing to match the mixture of J(2KL+1) posterior distributions
to a single Gaussian, as required by the applied multi-model

inference scheme. Denoting the measurement-update instance

under the j-th dynamic model and its m-th split distribution by

the index pair (j,m), we as such do not merge the single esti-

mated observation densities p(yt|xt,nt, (j,m)), as carried out
by FAUBEL et al. [7], but the resulting posterior distributions

p(xt,nt|y1:t, (j,m)). This calls for the calculation of the pos-

terior probabilities of all J(2KL+1) measurement-update in-

stances, as opposed to the J model posterior probabilities under

the standard multi-model inference scheme.

5. Experimental Results

The experiments were conducted on the test set A of the Au-

rora 2 database. The IEKF-α is applied in the cepstral do-

main, followed by a cepstral mean subtraction carried out

on the enhanced feature vectors prior to calculation of the

dynamic components. Splitting is performed along the L
dominant eigenvectors of the predictive Gaussian distributions

p(xt,nt|y1:t−1, st=j) for J=16 linear dynamic models.

In a first experiment we investigate the influence of the

mean shift η on the recognition performance.Therefore, the pa-

rameter η is varied between 0 and its bound ηmax. Since we

expect the splitting to be most beneficial under low signal-to-

noise ratio (SNR) conditions, we focus on the 0 dB case, only.

Thereby Eq. (19) is used to determine the optimal center weight,

which has been found to be non-negative for the considered

setup. Note that though the optimal value for γ depends on

L and K, ηmax solely depends on K if γ=γopt is chosen. The
resulting recognition results are given in Fig. 2.

The performance of the IEKF-α without application of the

splitting scheme can be read off at η/ηmax=0. For all examined



 

 

57

58

59

60

61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

η/ηmax

A
v
er
ag
ed

A
cc
u
ra
cy

[%
]

L=1,K=1, ηmax=1.7321

L=1,K=2, ηmax=1.4192

L=1,K=3, ηmax=1.2323

L=2,K=1, ηmax=1.7321

Figure 2: Averaged recognition accuracies on test set A of the

Aurora 2 database for an SNR of 0 dB; η∈[0, ηmax], γ=γopt for
L=1,K∈{1, .., 3} and L=2, K=1

setups (L=1, K ∈{1, .., 3} and L=2, K =1), the averaged

recognition accuracies exhibit the same characteristic: the accu-

racy first increases with η, reaches a plateau and finally declines
when approaching ηmax. The greatest improvement compared to

the baseline (+3.5% absolute) is obtained withL=1 andK=2
at η/ηmax = 0.8. Interestingly, increasing the number of split

directions from L=1 to L=2 could not improve the results.

This may be contributed to the fact that splitting (and fil-

tering) is performed in the cepstral domain, where the energy

component dominates the eigenvalues. However, the lineariza-

tion of (1) with respect to the current split distribution and the

estimation of the mean and covariance of the corresponding ob-

servation density requires the transformation to the logarithmic

mel power spectral domain, which is done by application of

the pseudo-inverse of the DCT matrix. The variance reduc-

tion in the energy component can thus be considered to spread

along all components of the state vector in the logarithmic mel

power spectral domain and thus reduce the influence of the non-

linearity on the linearization for all components of the observa-

tion model in the logarithmic mel power spectral domain. Nev-

ertheless, splitting in L> 1 directions may become useful for

different observation models or inference problems.

With η approaching its bound ηmax, β approaches one and

the variances along the corresponding split directions becomes

zero. Though this may be reminiscent of the unscented filter,

there is a subtle, but important difference to it. First, the pro-

posed splitting scheme does not require the number of split di-

rections to be equal to the number of (possibly augmented) state

dimensions as required by the unscented filter. Thus, one can fo-

cus on those directions where the non-linearity is most severe.

Second and most important, the proposed splitting scheme al-

lows for merging the contributions of the individual splits on

the posterior density level. This, however, is not possible under

the unscented filter, which explicitly assumes the observation

density to be Gaussian and thus renders the posterior distribu-

tion to be Gaussian, too. However, a detailed comparison to the

unscented filter is not the focus of this paper and will be left for

future research.

Finally, the computationally modest configuration (L= 1,
K =1, γ= γopt, η/ηmax =0.8) is used to carry out feature en-

hancement on the complete test set A of the Aurora 2 database.

This time, we also utilize the uncertainty about the clean speech

estimates provided by the filter to carry out the final recogni-

tion with uncertainty decoding [11]. Results for both filters, the

standard IEKF-α and the filter with the Gaussian sum approxi-

mation, are given in Tab. 1. In comparison to the standard IEKF-

α, the application of the splitting scheme results in an improved

recognition performance which under the standard decoder al-

ready reaches the performance of the uncertainty decoder ap-

Table 1: Averaged recognition accuracies on test set A of the

Aurora 2 database with standard and uncertainty decoding

SNR IEKF-α IEKF-α + splitting

[dB] standard uncertainty standard uncertainty

20 98.72 98.64 98.70 98.66

15 97.18 97.31 97.21 97.30

10 93.61 94.03 93.41 93.72

5 82.82 84.12 83.16 84.66

0 56.95 58.92 60.47 62.73

∅ 85.86 86.60 86.59 87.41

plied to the standard IEKF-α. Additional application of the

uncertainty decoder finally results in an accuracy of 87.41%.

Note that the major gain is almost exclusively achieved under

low SNR conditions – validating the assumption our first exper-

iment was subject to.

6. Conclusions

In this work, a splitting and weighting scheme has been de-

scribed that allows for splitting a Gaussian density into a Gaus-

sian mixture density. We were able to extend the existing theory

to splits along arbitrary directions, not necessarily along the di-

rections of the eigenvectors. The GMM and the original Gaus-

sian exhibit equal central moments up to an order of four. How-

ever, the resulting mixtures’ covariances have eigenvalues that

are smaller than those of the covariance of the original distribu-

tion, thereby reducing the linearization error of a Taylor series

expansion. Application to model-based speech feature enhance-

ment on the the Aurora 2 speech recognition task confirmed

this property to be beneficial in the context of non-linear state

estimation. The splitting contributes most under low SNR con-

ditions, where the non-linearity is most severe and where the

covariance of the predictive distribution is large, such that the

assumptions inherent to the extended KALMAN filter are con-

tradicted most.
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