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ABSTRACT
The paper proposes a modification of the standard maximum a poste-
riori (MAP) method for the estimation of the parameters of a Gaus-
sian process for cases where the process is superposed by additive
Gaussian observation errors of known variance. Simulations on ar-
tificially generated data demonstrate the superiority of the proposed
method. While reducing to the ordinary MAP approach in the ab-
sence of observation noise, the improvement becomes the more pro-
nounced the larger the variance of the observation noise. The method
is further extended to track the parameters in case of non-stationary
Gaussian processes.

Index Terms— MAP parameter estimation, noisy observations

1. INTRODUCTION

MAP estimation of mean and variance of a stationary Gaussian
process is probably one of the most popular textbook examples
of Bayesian parameter estimation [1]. In practice, however, the
Gaussian process is often not directly observable, but superposed by
additive noise, caused e.g. by measurement or estimation errors. The
problem occurs for example in the enhancement of noisy speech,
where the enhancement algorithms require an estimate of the param-
eters of the noise process. These in turn have to be estimated from
the noisy speech, i.e. the target process (here: acoustical environ-
mental noise) whose parameters are to be estimated, is not directly
observable, but only noisy observations, in this case observations
corrupted by speech. Another example are tracking problems in the
presence of unknown or time-variant dynamical model parameters
[2, 3]. Here, the model parameters have to be estimated alongside
the process state vector, both from noisy observations. While the ex-
pectation maximization algorithm is a general approach to compute
maximum likelihood estimates of the hidden process parameters [4],
in speech enhancement minimum statistics based methods [5] may
be employed for the estimation of the noise power spectral density.

Here, we present a new general estimation concept taking the
Bayesian perspective, which might e.g. be applied for the solution
of the above-mentioned problems. Besides taking advantage of a
priori knowledge about the parameters gained from previous obser-
vations, it exploits two usually valid fundamental assumptions: the
uncorrelatedness of the desired process and the superposed noise and
the availability of the variance of the noise process. While the lat-
ter might not be explicitly available in many applications, it is often
possible to compute an estimate thereof.

The paper is organized as follows. In Section 2 we present the
idea of MAP based parameter estimation, where we recapitulate the
conventional MAP approach in Section 2.1, present the modifica-
tions for noisy observations in Section 2.2 and explain the extension
for non-stationary processes in Section 2.3. Section 3 provides sim-
ulation results and the paper is concluded by Section 4.

2. MAP-BASED PARAMETER ESTIMATION FROM
NOISY OBSERVATIONS

Assume that we are given a real-valued stationary white Gaussian
stochastic process {Vm}

m∈N
, where the random variable Vm has

the following Gaussian probability density function (pdf)

pVm (vm) = N
(
vm;μV , σ

2
V

)
for m ∈ N, (1)

withμV and σ2
V denoting the mean and variance of Vm, respectively.

Assuming that at some time instant m we are given some es-
timates μ̂V,m and σ̂2

V,m of the pdf parameters, we are interested in
improving the estimates based on the noisy observation

v̂m+1 := vm+1 + em+1. (2)

Here, vm+1 is a realization of Vm+1 and em+1 denotes a realization
of a zero-mean Gaussian observation error Em+1, which is uncorre-
lated to Vm+1. The pdf of the error is assumed to be given by

pEm+1 (em+1) = N
(
em+1; 0, σ

2
Em+1

)
, (3)

employing a time-variant known variance σ2
Em+1

.
Our approach is motivated by the standard MAP parameter esti-

mation, which, however, assumes the observations to be free of er-
rors. We give a short review of this estimation procedure, before we
address the necessary modifications to consider observation errors.

2.1. Error-Free Observations

In the case of an error-free observation v̂m+1 = vm+1, the improved
parameters μ̂V,m+1 and σ̂2

V,m+1 are obtained according to the stan-
dard MAP parameter estimation approach by maximizing the joint
posterior pdf of μV and σ2

V given the new observation vm+1

p
(m+1)

μV ,σ2
V
|Vm+1

(μ, σ2|vm+1)

∝ p
(m)

μV ,σ2
V

(μ, σ2) · p(m)

Vm+1|μV ,σ2
V

(
vm+1|μ, σ

2
)
, (4)

which is according to Bayes’ rule proportional to the product of the
joint prior parameter pdf p(m)

μV ,σ2
V

(μ, σ2) and the Gaussian observa-

tion likelihood

p
(m)

Vm+1|μV ,σ2
V

(
vm+1|μ, σ

2
)
∝ σ

−1 exp

(
−
(vm+1 − μ)2

2σ2

)
. (5)

In order to be able to apply the estimation procedure recursively
for subsequent time instants, the posterior pdf must be in the same
family as the prior pdf. Thus, the prior pdf is chosen to be a conju-
gate prior for the likelihood (5), which may be written as the product
[1]
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p
(m)

μV ,σ2
V

(μ, σ2) = p
(m)

μV |σ2
V

(μ|σ2) · p(m)

σ2
V

(σ2) (6)

of the conditional pdf of μV given σ2
V

p
(m)

μV |σ2
V

(μ|σ2) = N

(
μ; μ̂V,m,

σ2

κm

)
(7)

∝ (σ)−1 exp

(
−
κm (μ− μ̂V,m)2

2σ2

)
(8)

and the marginal pdf of σ2
V

p
(m)

σ2
V

(σ2) ∝
(
σ
2
)− νm

2
−1

exp

(
−
νmλ2

V,m

2σ2

)
, (9)

which is a scaled inverse chi-square distribution. The four hyper
parameters μ̂V,m, κm > 0, νm > 0 and λ2

V,m may be interpreted
as the location and scale of μV as well as the degrees of freedom
and scale of σ2

V , respectively. Typically, νm = κm represents the
number of observations underlying the distribution.

Using (8) and (9) the prior distribution (6) may be formulated as

p
(m)

μV ,σ2
V

(μ, σ2)

∝
(
σ
2
)− (νm+3)

2 exp

(
−
νmλ2

V,m + κm (μ− μ̂V,m)2

2σ2

)
. (10)

Since its mode satisfies(
μ̂V,m,

νm

νm + 3
λ
2
V,m

)
= argmax

μ,σ2

p
(m)

μV ,σ2
V

(μ, σ2), (11)

given the initial estimate σ̂2
m, the scale λ2

V,m is chosen such that σ̂2
m

maximizes the prior:

λ
2
V,m =

νm + 3

νm
σ̂
2
V,m. (12)

Using the prior pdf (10) and the likelihood (5), it can be shown
after some basic manipulations [1] that the posterior pdf (4) has the
same form as the prior pdf (10), where the four parameters κm, νm,
μ̂V,m and λ2

V,m have to be correspondingly replaced by

κm+1 = κm + 1, νm+1 = νm + 1 (13)

μ̂V,m+1 = μ̂V,m +
1

κm + 1
(vm+1 − μ̂V,m) (14)

λ
2
V,m+1 =

1

νm + 1

(
νmλ

2
V,m +

κm

κm + 1
(vm+1 − μ̂V,m)2

)
.

(15)

The posterior pdf (4) is, according to (11), maximized by μ̂V,m+1

and σ̂2
V,m+1 =

νm+1

νm+1+3
λ2
V,m+1.

For the following parameter estimation employing the obser-
vation vm+2 this posterior pdf is interpreted as new priori pdf
p
(m+1)

μV ,σ2
V

(μ, σ2) allowing a recursive processing.

2.2. Noisy Observations

In the case of a noisy observation v̂m+1 the observation likelihood
changes to

p
(m)

V̂m+1|μn,σ2
n

(
v̂m+1|μ, σ

2
)

∝
(
σ
2 + σ

2
Em+1

)− 1
2 exp

⎛
⎝−

(v̂m+1 − μ)2

2
(
σ2 + σ2

Em+1

)
⎞
⎠ . (16)

Since the prior pdf (6) is not a conjugate prior for the likelihood (16),
the posterior pdf has a different form than the prior pdf and can be
shown to satisfy

p
(m+1)

μV ,σ2
V

|V̂m+1
(μ, σ2|v̂m+1)

∝
(
σ
2+σ

2
Em+1

)− 1
2
(
σ
2)− (νm+3)

2

· exp

(
−
κ̃m+1

(
σ2

) [
μ−μ̃V,m+1

(
σ2

)]2
2σ2

)

· exp

⎛
⎜⎜⎝−

νmλ2
V,m +

κmσ2(v̂m+1−μ̂V,m)2

(κm+1)σ2+κmσ2
Em+1

2σ2

⎞
⎟⎟⎠ , (17)

where

κ̃m+1

(
σ
2) := κm +

σ2

σ2 + σ̂2
Em+1

(18)

μ̃V,m+1

(
σ
2
)
:= μ̂V,m +

σ2 (v̂m+1 − μ̂V,m)

(κm + 1) σ2 + κmσ2
Em+1

(19)

resemble (13) and (14), but now are functions of σ2. Due to its much
more complex form compared to the prior pdf (10), the search of the
mode of the posterior pdf (17) cannot be adopted from the error-free
case in a straight forward manner.

We propose to search the mode by first approximating (18) and
(19) by constants as follows

κm+1 := κ̃m+1

(
σ̂
2
V,m

)
(20)

μ̂V,m+1 := μ̃V,m+1

(
σ̂
2
V,m

)
. (21)

This approximation is motivated by the fact that both quantities (18)
and (19) are bounded by

κm <κ̃m+1

(
σ
2
)
< κm + 1 (22)

μ̂V,m <μ̃V,m+1

(
σ
2)

< μ̂V,m +
1

(κm + 1)
(vm − μ̂V,m) , (23)

where the lower and upper bounds are reached for σ2 → 0 and
σ2 → ∞, respectively. Since the mode of the prior with respect
to σ2 is located at σ̂2

V,m, it is reasonable to take this value as the
prediction for the value of the mode of the posterior pdf (17) and
evaluate (18) and (19) at this location.

Using the approximations (20) and (21) in (17) yields an approx-
imated posterior, which we denote by p̂(m+1)

μV ,σ2
V

|V̂m+1
and for which

argmax
μ

p̂
(m+1)

μV ,σ2
V

|V̂m+1
(μ, σ2|v̂m+1) = μ̂V,m+1 ∀σ2 ∈ R

+

(24)

holds. Thus, the search for its mode is equivalent to the search of the
minimum of the following function

f : R+ → R,

f (ψ) :=− 2 ln
(
p̂
(m+1)

μV ,σ2
V
|V̂m+1

(μ̂V,m+1, ψ|v̂m+1)
)

(25)

=(K5 + 3) ln (ψ) + ln (K0 + ψ) +
K1

ψ
+

K2

K3ψ +K4

(26)
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with constants defined as

K0 := σ
2
Em+1

, K1 := νmλ
2
V,m, K2 := κm (v̂m+1 − μ̂V,m)2 ,

(27)

K3 := 2 (κm + 1) K4 := 2κmσ
2
Em+1

, K5 := νm. (28)

Since f is continuous and a sum of a strictly monotonically increas-
ing and a strictly monotonically decreasing function, for which

lim
ψ→0

f (ψ) = lim
ψ→∞

f (ψ) = ∞ (29)

holds, it can be shown that it has exactly one minimum, which is
a local one. For that reason searching the minimum of f can be
equivalently formulated as searching the (only positive) root of its
derivative f ′, which is obtained by applying some basic derivation
rules as

f
′(ψ) =

1

ψ2 (K0 + ψ) (K3ψ +K4)
2 · g (ψ) (30)

with g (ψ) defined by

g (ψ) := [(K5 + 3)ψ −K1] (K0 + ψ) (K3ψ +K4)
2

+ ψ
2 [(K3ψ +K4)

2 − 2K2K3 (K0 + ψ)
]
. (31)

As the first factor of f ′ is positive for positive ψ, it is sufficient
to find the positive root of g, which in principle may be determined
analytically, since g is a fourth order polynomial. However, for rea-
sons of simplicity we propose a numerical approach instead. It can
be verified that g(0) < 0 and g (bU) > 0 with

bU :=max

(
K1

K5 + 3
,
2K2 +K3K0 −K4

K3

)
. (32)

Due to the continuity of g, its single positive root must be located
within the interval [0, bU] and may thus be effectively computed by
using a combination of a bisection and Newton approach.

Starting from an initial approximate solution ψ0 obtained by the
bisection method, according to the Newton method improved solu-
tions ψj , j = 1, 2, ... may be iteratively computed by

ψj = ψj−1 −
g (ψj−1)

g′ (ψj−1)
. (33)

We propose to stop the iterations, if the relative difference between
the j-th and (j − 1)-th solution

δj :=
|ψj − ψj−1|

|ψj−1|
(34)

falls below a lower threshold δ. The estimate of the mode of the
posterior pdf p̂(m+1)

μV ,σ2
V
|V̂m+1

(μ, σ2|v̂m+1) with respect to σ2 is then

computed from

σ̂
2
V,m+1 := ψJ , (35)

where J is the smallest index, for which δJ < δ holds.
Having found the mode of the approximate posterior pdf

p̂
(m+1)

μV ,σ2
V

|V̂m+1
, the goal is to approximate this pdf by a pdf having

the same form as the prior pdf (6). For this purpose, it is reasonable
to set

νm+1 = κm+1 (36)

and to use (6) for the approximation of the posterior pdf, where the
parameters κm, μ̂V,m, σ̂2

V,m and νm are replaced by (20), (21), (35)
and (36), respectively.

It is important to note that this method simplifies to the standard
MAP approach for σ2

Em
= 0.

2.3. Modifications for Non-Stationary Processes

We now assume the Gaussian stochastic process {Vm}
m∈N

to be
non-stationary, which can be expressed by substituting the time-
invariant mean μV and variance σ2

V in (1) by its time-variant coun-
terparts μVm and σ2

Vm
.

In order to estimate these time-variant parameters, we propose
a simple modification of the approach proposed in the previous sec-
tion. The idea is to introduce a forgetting mechanism which keeps
only the information obtained by the most recent N observations.
This is accomplished by keeping the values of νm and κm constant
at the value of N , while the rest of the estimation process remains
unaltered. The choice ofN depends on the desired trade-off between
estimation accuracy and tracking ability.

3. SIMULATIONS

To verify the advantages of the proposed tracking method over the
conventional MAP estimation method, which uses the update equa-
tions (13) - (15), we compared both methods in estimating the pa-
rameters of stationary as well as non-stationary Gaussian stochastic
processes in the presence of noisy observations.

3.1. Stationary Case

The apparent difference between the two methods becomes clear in
Figure 1, which shows the realization of a noisy observation process{
V̂m

}
1≤m≤M

with M = 10000 and μV = σ2
V = 1 as well as

the corresponding mean and variance estimates. The variance of the
observation error σ2

Em
was randomly drawn from a uniform distri-

bution on
[
0, 16 sin2

(
2πm
M

)]
.

It can be observed that the conventional MAP approach tries
to estimate the mean μV and variance σ2

V + σ2
Em

of the noisy ob-
served process V̂m rather than of Vm, resulting in more fluctuating
mean estimates and overestimated variance estimates compared to
the proposed method. Note, in particular, the different scaling of
the graphs showing the variance estimates in Figure 1c. It should be

emphasized that correcting the variance estimates σ̂2(MAP)

V,m obtained
by the conventional MAP method by simply subtracting σ2

Em
is not

reasonable, since it results in strongly fluctuating estimates, which
may even become negative.

3.2. Non-stationary Case

The proposed method was further applied for the tracking of the
time-variant parameters

μVm = cos

(
4πm

M

)
, σ

2
Vm

= 1 + sin2
(πm
M

)
, M = 2000.

(37)

of a non-stationary Gaussian random process Vm. The vari-
ance σ2

Em
was randomly drawn from a uniform distribution on[

0, c2 sin2
(
2πm
M

)]
, where c controls the maximum variance of the

superposed error Em. For the proposed method, the values of νm
and κm were kept constant at N = 10 to allow an appropriate
tracking ability. A corresponding modification was applied to (13)
of the conventional MAP approach.

To measure the accuracy of the estimated quantities we com-
puted the root mean square errors RMSEμV

and RMSEσ2
V

of the
estimated means and variances, respectively, averaged over 200 ex-
periments, which are given in Table 1 for different values of c. It
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Fig. 1: Exemplary performance of conventional MAP and proposed
approach on a stationary white Gaussian random process.

Table 1: Root means square errors of estimated parameters

c 0.5 1 2 3 4 6

RMSE(Proposed)
μV

0.27 0.27 0.28 0.29 0.30 0.35
RMSE(MAP)

μV
0.28 0.29 0.35 0.42 0.51 0.71

RMSE(Proposed)
σ2
V

0.41 0.41 0.45 0.48 0.53 0.62

RMSE(MAP)
σ2
V

0.52 0.49 0.88 1.99 3.65 8.40

can be seen that in all cases the proposed method outperforms the
conventional MAP procedure, where the superiority becomes more
apparent for increasing values of c. This can be attributed to the fact
that, as in the stationary case, the conventional MAP method esti-
mates the parameters of V̂m rather than that of Vm. Figure 2 shows
the increased fluctuation of the mean estimates and overestimation
of the variance obtained by the conventional MAP method compared
to the proposed approach for a realization of Vm with c = 4. Note,
once again, the different scaling used for the graphs in Figure 2c.

4. CONCLUSION

We have presented a modified MAP approach for estimating the pa-
rameters of non-stationary Gaussian random processes from noisy
observations with zero mean Gaussian errors with known variance.
In contrast to the conventional MAPmethod, the proposed technique
allows to estimate the parameters of the concealed desired process by
explicitly considering observation errors. It was exemplarily shown
by simulations that the superiority of the presented method to con-
ventional MAP increases with the variance of the observation errors.
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Fig. 2: Exemplary performance of conventional MAP and proposed
approach on a non-stationary Gaussian random process.
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