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Abstract

Linear dynamic models (LDMs) have been shown to be a vi-

able alternative to hidden MARKOV models (HMMs) on small-

vocabulary recognition tasks, such as phone classification. In

this paper we investigate various statistical model combination

approaches for a hybrid HMM-LDM recognizer, resulting in a

phone classification performance that outperforms the best indi-

vidual classifier. Further, we report on continuous speech recog-

nition experiments on the AURORA4 corpus, where the model

combination is carried out on wordgraph rescoring. While the

hybrid system improves the HMM system in the case of mono-

phone HMMs, the performance of the triphone HMM model

could not be improved by monophone LDMs, asking for the

need to introduce context-dependency also in the LDM model

inventory.

Index Terms: speech recognition, hybrid decoder architecture,

acoustic modeling, linear dynamic models

1. Introduction

Traditionally, automatic speech recognition systems are based

on hidden MARKOV models (HMMs) with Gaussian mixtures

modeling the state conditioned feature vector distributions. The

power of modeling the speech feature trajectory by combining

multimodal and multivariate Gaussians with an underlying hid-

den, discrete-valued state process and the inherent assumption

of statistical independence between features in adjacent analysis

frames once a HMM state is given has rendered this approach

both effective and efficient. However, it’s the conditional in-

dependence assumption that is commonly cited to be the ma-

jor shortcoming of this prevailing acoustic modeling approach

[1, 2].

Segment or trajectory models such as the linear dynamic

models (LDMs) have been proposed to overcome this weak-

ness [1, 2, 3, 4]. Linear dynamic models encounter these

shortcoming by introducing a hidden, linear, autoregressive and

continuous-valued state process underlying the observed fea-

tures. Although performance of this modeling approach on

phone classification tasks where phone boundaries are explic-

itly given has been found to be superior to that of an equiva-

lent static model (1-state monophone HMM with unimodal full

covariance Gaussian emission density), it falls short on perfor-

mance compared to established acoustic modeling techniques,

yet – both in phone classification with known phone boundaries

and in unconstrained recognition of phones [5]. Further, appli-

cation of LDMs to continuous speech recognition results in very

challenging decoding operations, where approximations have to

be introduced to make it computational tractable.

Irrespective of the preceding findings and issues it has been

found that LDMs and HMMs have complementary modeling

strenghts and that a combination of the two may result in im-

proved recognition accuracies [5, 6]. While the HMM is capa-

ble of modeling long-term temporal dependencies, the strength

of the LDM lies in the direct modeling of statistical dependen-

cies between consecutive feature vectors.

In this paper we first review phone classification experi-

ments on the TIMIT database. The results obtained by various

statistical model combination approaches motivate the applica-

tion of both LDMs and HMMs in a hybrid decoder architec-

ture for continuous speech recognition. We show how this hy-

brid decoding is realized by rescoring wordgraphs and demon-

strate by experiments that the combined system outperforms the

best individual one in the case of context-independent models.

Since, however, the performance of the triphone HMM decoder

could not be improved by application of the LDMs, we con-

clude the paper with a discussion on how to extend LDMs to

realize context-dependent segment models.

2. Hidden MARKOV Models

The hidden MARKOV model is the most popular approach to

model the observed speech features and is capable of model-

ing long-term temporal dependencies. By introducing a hidden,

discrete-valued state process underlying the observation pro-

cess, the likelihood of a sequence of feature vectors y
te(n)

ts(n)
=

“

yts(n)
,yts(n)+1, .., yte(n)

”

, yτ ∈ R
d, starting at discrete

time instance ts(n) and ending at discrete time instance te(n)

given a hypothesized word ωn ∈ [Ω1, .., ΩK ], where n denotes

the position of the word within the sentence,. is given by

p(y
te(n)

ts(n)
|ωn)≈ max

q
te(n)
ts(n)

te(n)
Y

τ=ts(n)

p(yτ |qτ , ωn)P (qτ |qτ−1, ωn). (1)

The maximization in the above VITERBI-approximation has

to be carried out over all possible sequences q
te(n)

ts(n)
of hidden

states making up the word under consideration, subject to the

state transition probabilities P (qτ |qτ−1, ωk) within this word.

The state-conditioned feature vector distribution p(yτ |qτ , ωn)
is usually modeled as a mixture of I Gaussians

p(yτ |qτ =j, ωn =Ωk)=
I

X

i=1

ci,j,kN
`

yτ ; µi,j,k, Σi,j,k

´

, (2)

with mixture weights ci,j,k, means µi,j,k and covariances

Σi,j,k. In large vocabulary speech recognition, the word HMMs

are usually obtained from concatenating HMMs based on sub-

word units such as mono- or triphones, both trained under the

expectation maximization (EM) framework.

3. Linear Dynamic Models

Linear dynamic models have been proposed as an alternative

acoustic model for phone classification [3] and recognition [7].

The LDM system is based on a hidden, linear, autoregressive,

continuous-valued state process underlying the observation pro-

cess. A linear measurement equation relates the hidden state to



the observation. Although conceptually LDMs and HMMs both

utilize a Markovian state space model, the continuity of the state

space and the direct statistical dependencies between adjacent

feature vectors render the computation of the likelihood of a

sequence of feature vectors y
te(n)

ts(n)
given a hypothesized word

ωn nontrivial. However, assuming subword boundaries within

words to be known, the likelihood of the words can be computed

by switching the model parameters at subword boundaries. For

a given subword unit υl(n) ∈ [Υ1, .., ΥM ] (with l denoting

the position of the subword unit within the word ωn) starting

at time instance ts(n,l) and ending at time instance te(n,l), the

likelihood can be computed as

p(y
te(n,l)

ts(n,l)
|υl(n)) =

te(n,l)
Y

τ=ts(n,l)

p(yτ |y
τ−1
ts(n,l)

, υl(n)), (3)

with the subword unit υl(n) absorbing the dependency on the

word ωn. Conceptually, (3) is evaluated by introducing the

continuous-valued state sequence x
te(n,l)

ts(n,l)
, xτ ∈ R

d′

, under-

lying the observation sequence y
te(n,l)

ts(n,l)
as

p(y
te(n,l)

ts(n,l)
|υl(n)) =

te(n,l)
Y

τ=ts(n,l)

Z

xτ

p(yτ |xτ , υl(n))p(xτ |y
τ−1
ts(n,l)

, υl(n)) dxτ (4)

and computing p(xτ |y
τ−1
ts(n,l)

, υl(n)) by recursively exploiting

p(xτ |y
τ−1
ts(n,l)

, υl(n)) =
Z

xτ−1

p(xτ |xτ−1, υl(n))p(xτ−1|y
τ−1
ts(n,l)

, υl(n))dxτ−1, (5)

p(xτ |y
τ
ts(n,l)

, υl(n)) ∝

p(yτ |xτ , υl(n))p(xτ |y
τ−1
ts(n,l)

, υl(n)), (6)

which can be solved analytically if state and measurement equa-

tion are linear and driven by (uncorrelated) Gaussian noises, re-

sulting in the standard KALMAN filtering. The probability den-

sity functions completely describing the LDM are given by

p(x1|υl(n)=Υm)=N (x1;µm,Σm) , (7)

p(xτ |xτ−1,υl(n)=Υm)=N (xτ ;Fmxτ−1+wm,Dm) , (8)

p(yτ |xτ,υl(n)=Υm)=N (yτ ;Hmxτ+vm,Cm) , (9)

with {µ,Σ,F,w,D,H,v,C}M
m=1 denoting the means and

covariances of the state priors, the state transition matrices, the

means and covariances of the state noises, the measurement

matrices and the means and covariances of the measurement

noises, respectively. The likelihood of a sequence of subword

units {υl(n)}
L(n)
l=1 of word and pronunciation dependend length

L(n), eventually composing the word ωn, can be computed in

two ways, namely by following the state-reset (R) or the state-

passed (P) approach, as denoted by FRANKEL [5].

In the state-reset approach any acoustic context dependency

between successive subword units is disregarded and the state

ans thus the KALMAN filter is forced to be reset at the begin-

ning of a new subword unit. The likelihood of a sequence of

subword units in the state-reset approach can thus be written as

the product of the individual segment likelihoods

p
(R)(y

te(n)

ts(n)
|ωn) ≈

L(n)
Y

l=1

p(y
te(n,l)

ts(n,l)
|υl(n)), (10)

where p(y
te(n,l)

ts(n,l)
|υl(n)) is given by (3). In contrast to the state-

reset approach, the state-passed approach allows the state to

be continuous over subword boundaries. The likelihood com-

putation thus consists of a single KALMAN filter recursion

over all features y
te(n)
ts(n)

associated with the hypothesized word

ωn. However, the filter’s parameters are switching at subword

boundaries. Introducing the discrete-valued indicator variable

υ(τ ) specifying the subword unit and the LDM parameters to

be used at time instance τ one obtains the likelihood of a hy-

pothesized word as

p
(P)(y

te(n)

ts(n)
|ωn) =

te(n)
Y

τ=ts(n)

p(yτ |y
τ−1
ts(n)

, υ(τ )). (11)

For both approaches, state-reset and state-passed, EM algo-

rithms can be applied to train subword LDM parameters.

4. Statistical Model Combination

Statistical model combination aims at combining the modeling

power of two or more models in the hope that the combined

model will be better than the individual ones [8]. Applying

this paradigm to the acoustic modeling at hand thus asks for

rules to combine the traditional HMMs with the recently pro-

posed LDMs, both modeling subword units. In general, statis-

tical model combination of multiple acoustic models for speech

recognition can happen either on the ”likelihood level” or the

”subword unit posterior level”. In the first case, the final likeli-

hood of the hypothesized word under consideration is a function

of the individual likelihoods, whereas in the latter case the final

posterior probability of the hypothesized word under consider-

ation is computed as a function of the posterior probabilities of

the individual models.

5. Phone Classification on TIMIT

Initial experiments on statistical model combination have been

carried out on the TIMIT phone classification task. The TIMIT

corpus includes time-aligned orthographic, phonetic and word

transcriptions for each utterance [9]. The decimated version

of the data with a sampling rate of 8 kHz was employed. The

phonetic transcriptions have been used to train and evaluate 61
context-independent LDMs and HMMs on the standard d = 39
dimensional MFCC+∆+∆2 feature vectors obtained by coding

the speech data with the ETSI standard front-end [10]. In the

evaluation phase, LDM and HMM scores for all hypothesized

phones of a given utterance have been stored in a wordgraph and

baseline LDM and HMM classification results have been deter-

mined by applying the VITERBI-search on the wordgraph. The

following model combination techniques have been examined:

• HMM/LDM: always select either the HMM or the LDM;

• model combination based on likelihoods:

- Product LH: the support for a phone is the exponentially

weighted product of the individual likelihoods;

• model combination based on phone posterior probabilities

calculated on wordgraphs [11]:

- Product PP: the support for a phone is the exponentially

weighted product of the individual posterior probabilities;

- Inverse Entropy: the support for a phone is the weighted

sum of the individual posterior probabilities with weights

inversely proportional to the entropy of the acoustic mod-

els [12];

- Entropy-based DS: DEMPSTER-SHAFERmodel combina-

tion [12]; weights of the ignorance models are based on

the entropy of the acoustic models;



The results listed in Table 1 have been obtained using the state-

reset approach with LDMs of state dimensionality d′ = 12
and HMMs with a 3-state linear topology and a mixture of 20

diagonal covariance Gaussians modeling the state conditioned

feature vector distributions. A log-Gaussian duration model

and an unsmoothed phone bigram language model have been

trained on the same corpus as the LDMs and HMMs and are

applied, too (see [6] for details). All results are reported on a

collapsed phone set of cardinality 39. If explicit weighting is

involved, weights for the HMM and the LDM are denoted by

wHMM and wLDM, respectively. Although the HMM incorpo-

Table 1: Classification results for the proposed model combina-

tion approaches on the TIMIT phone classification task

model combination classification

approach studied accuracy [%]

HMM 76.96

LDM 73.28

Product LH (wHMM=wLDM=0.5) 77.46

Product LH (wHMM== 0.7, wLDM=0.3) 77.64

Product PP (wHMM=wLDM=0.5) 77.62

Product PP (wHMM=0.75, wLDM=0.25) 77.81

Inverse Entropy 77.42

Entropy-based DS 77.45

rates many more parameters per phone (4747) compared to the

LDM (1611) and although the HMM system achieves a con-

siderably better classification accuracy than the LDM system,

the hybrid HMM-LDM classifier always outperforms the best

individual one. The increases in classification accuracy can be

found to be significant and are apparent over all model com-

bination methods examined. However, the more sophisticated

model combination methods based on phone posterior proba-

bilities (e.g. Entropy-based DEMPSTER-SHAFER model com-

bination) yield, if any, only marginally better results than the

”simple” exponentially weighted product of likelihoods with

equally weighted models. Choosing the weights in the product

rules different from the default values of wHMM = wLDM = 0.5
further improves the classification accuracy. Optimal values of

(wHMM=0.7, wLDM=0.3) for the exponentially weighted prod-

uct of likelihoods and (wHMM =0.75, wLDM =0.25) for the ex-
ponentially weighted product of phone posterior probabilities

have been determined during a development phase leading to a

classification accuracy of 77.64 % and 77.81 %, respectively.

6. Speech Recognition on AURORA4

Due to the effectiveness and the simplicity, the exponentially

weighted product of likelihoods will be applied to the speech

recognition experiments following. However, as noted in sec-

tion 3, the computation of the likelihood for a given word hy-

pothesis ωn under the LDM is not trivial. The exploitation of

direct statistical dependencies between consecutive feature vec-

tors y
te(n)

ts(n)
by the LDMs asks for the consideration of all possi-

ble model (subword unit) histories from the beginning of a hy-

pothesized word ts(n) to its end te(n) (which, in general, is hy-

pothesized, too). This requires a separate KALMAN filter to be

run for each hypothesized start time of the corresponding sub-

word unit in the state-reset case. If the state-passed approach is

considered, the computational complexity is further increased,

since separate KALMAN filters have to be run for each possible

sequence of model histories.

To avoid the exploration of all possible paths for a given

word hypothesis and the involved computation, this paper ex-

ploits the alignment capabilities of the HMM recognizer to fa-

cilitate the application of the LDMs to the problem of continu-

ous speech recognition. That is, a wordgraph storing alternative

word hypotheses is constructed for each utterance under con-

sideration [13]. Besides the word hypotheses with start and end

times, the state sequence corresponding to the best path through

the HMM state trellis spanned for each hypothesis is kept, too.

With this limited representation of the search space at hand, the

computational burden associated with the use of LDMs for con-

tinuous speech recognition is thus reduced to rescoring of time-

aligned sequences of subword units in the wordgraphs by either

applying the state-reset or the state-passed approach. However,

since FRANKEL [5] found the state-passed approach to perform

worse than the state-reset approach on the phone classification

task, the focus in this paper is on the state-reset approach.

The experiments were performed on the AURORA4

database. The AURORA4 test database consists of the Wall-

street Journal Nov’92 evaluation test set to which noise at vary-

ing SNR levels and of varying type has been added [14]. In

this paper, the official AURORA4 selection test set compris-

ing 166 utterances recorded with a Sennheiser microphone and

decimated to 8 kHz is used. Beside the clean data of the AU-

RORA4 selection test set, six versions of the test set with ar-

tificially added noises at randomly chosen SNR conditions be-

tween 5 dB and 15 dB are examined. The results for the clean

test set as well as the average results over all noisy sets, both

obtained by using a bigram language model for the 5000-word
vocabulary, will be presented. Training of triphone and mono-

phone HMMs with a 3-state linear topology has been carried out
on clean training data, coded into the standard d = 39 dimen-

sional MFCC+∆+∆2 feature vectors by using the ETSI stan-

dard front-end [10]. While the monophone HMM is based on

unimodal diagonal covariance Gaussians, the triphone HMM

bases on mixtures of 10 diagonal covariance Gaussians. Mono-

phone LDMs are trained on the triphone-aligned feature vectors

obtained by operating the recognizer in forced-alignment mode

using the already trained triphone HMMs on the clean training

data. In doing so, 43 LDMs (42 monophone models + 1 model

for silence) of state dimension d′ = 12 remain to be trained.

The triphone based HMM recognizer is further used to construct

a wordgraph for each utterance [13]. During rescoring of word

hypotheses by the monophone LDMs, the monophone align-

ment for each word hypothesis in the wordgraph is obtained by

using the triphone alignment while dropping the triphone con-

text. LDM rescoring follows the state-reset approach presented

in section 3. Rescoring with monophone HMMs solely uses the

hypotheses’ start and end times with word HMMs being con-

structed from monophone HMMs by utilizing the dictionary,

followed by searching for the optimal path through the trellis

spanned by the HMM states.

Finally, recognition results are obtained by applying the

VITERBI-search on the wordgraph using either the monophone

HMM acoustic scores, the monophone LDM acoustic scores

or the combined acoustic scores following the exponentially

weighted product of likelihoods model combination approach.

The weights for the HMM and the LDM, respectively, have

been set to the ones found to give the best performance on the

TIMIT phone classification task, i.e. (wHMM=0.7, wLDM=0.3).
Resulting (E)rrors, (D)eletions, (S)ubstitutions and (I)nsertions

are given in Tables 2 and 3. Note that in general the error rates

are fairly large, which is due to the fact that monophones rather

than triphones are used and, for the noisy data, no attempt has

been made to compensate for the noise. Hence, the trends re-

ported in the following are consistent over all data sets.



Table 2: Recognition results for rescoring the wordgraph with

monophone HMMs or monophone LDMs

test monophone HMM LDM

set S [%] D [%] I [%] E [%] S [%] D [%] I [%] E [%]

clean 18.93 2.25 6.37 27.55 20.33 4.05 7.55 31.93

noisy 50.22 11.04 11.92 73.17 48.04 18.68 7.06 73.78

Table 3: Recognition results for rescoring the wordgraph by

combining monophone HMM and LDM likelihoods

test monophone HMM + LDM

set S [%] D [%] I [%] E [%]

clean 17.38 2.32 6.48 26.19

noisy 42.33 14.32 9.34 70.98

7. Discussion

As can be seen from Table 2, the recognition performance of

the monophone HMMs and the monophone LDMs differ sig-

nificantly in the percentage of insertions and deletions, with the

LDM system being prone to deletion errors, as also observed

by FRANKEL [7]. However, no attempt has been taken to bal-

ance the number of insertions and deletions (e.g. by tuning the

word insertion penalty). Looking at the error rates, the mono-

phone HMM system gives better results than the monophone

LDM system. Results of moving from the individual systems to

a hybrid decoder architecture by combining the likelihoods of

the monophone HMMs and the monophone LDMs in the expo-

nentially weighted product approach are given in Table 3. The

combined acoustic likelihoods finally yield consistently better

recognition results than the best individual system for all noise

types. Monophone linear dynamic models with the state-reset

approach to compute the likelihoods under the LDMs are thus

able to aid recognition of continuous speech with an acoustic

model based on monophone HMMs.

When context-dependent triphones are used, the error rate

of the HMM recognizer improves to 16.80 %, which is about

half of the error rate of the (monophone) LDM recognizer.

Due to this large performance difference, the combination of

triphone HMM likelihoods with the LDM likelihoods did no

longer lead to an improvement in error rate, as shown in Ta-

ble 4. For the LDM to be beneficial, its error rates need to

Table 4: Recognition results for rescoring the wordgraph with

triphone HMMs and their combination with LDMs

test triphone HMM triphone HMM + LDM

set S [%] D [%] I [%] E [%] S [%] D [%] I [%] E [%]

clean 10.20 1.10 5.49 16.80 10.76 1.33 5.49 17.57

noisy 35.77 10.17 11.02 56.96 34.77 14.12 8.46 57.32

be brought into the vicinity of the performance of the triphone

HMM recognizer. The most promising way to achieve this is

to incorporate context-dependency also into the LDM system.

However, the state-passed approach may not be appropriate to

introduce sufficient context dependency. An interesting option

would be to employ multiple (switching) linear dynamic models

(SLDMs) to model a subword unit. SLDMs have been shown

to be an appropriate model of speech dynamics in the context of

feature enhancement for robust speech recognition [15, 16, 17].

Finding ways to keep the number of model parameters from in-

creasing beyond train- and tractable dimensions (e.g. parameter

tying, model adaptation) is just one potential challenge of the

multiple model approach and, as the use of SLDMs for model-

ing phonetic context in general, will be left for future research.

8. Conclusions

In this paper the combination of linear dynamic models and

hidden MARKOV models based on Gaussian mixtures as an

acoustic model for continuous speech recognition is considered.

With significant improvements on a preliminary phone classifi-

cation task, the combination of HMM and LDM acoustic scores

has been applied to continuous speech recognition on the AU-

RORA4 corpus, where the model combination is carried ap-

plied to wordgraph rescoring. While the hybrid system has been

found to improve the HMM system in the case of monophone

HMMs, the performance of the triphone HMMmodel could not

be improved by monophone LDMs, asking for further explo-

ration of incorporating and modeling phonetic context also in

an LDM system.
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