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ABSTRACT

In this paper we propose to employ directional statistics in a complex

vector space to approach the problem of blind speech separation in

the presence of spatially correlated noise. We interpret the values

of the short time Fourier transform of the microphone signals to be

draws from a mixture of complex Watson distributions, a probabilis-

tic model which naturally accounts for spatial aliasing. The parame-

ters of the density are related to the a priori source probabilities, the

power of the sources and the transfer function ratios from sources

to sensors. Estimation formulas are derived for these parameters

by employing the Expectation Maximization (EM) algorithm. The

E-step corresponds to the estimation of the source presence prob-

abilities for each time-frequency bin, while the M-step leads to a

maximum signal-to-noise ratio (MaxSNR) beamformer in the pres-

ence of uncertainty about the source activity. Experimental results

are reported for an implementation in a generalized sidelobe can-

celler (GSC) like spatial beamforming configuration for 3 speech

sources with significant coherent noise in reverberant environments,

demonstrating the usefulness of the novel modeling framework.

Index Terms— Noisy Source Separation, Sparse Signal Sepa-

ration, EM-Algorithm, Directional Statistics, Speech Enhancement

1. INTRODUCTION

The objective of blind source separation (BSS) is to extract source

signals from mixed signals at the sensors and, if possible, to estimate

the unknown mixing channel. The BSS technique for speech dealt

with in this paper can be used in many applications of speech en-

hancement including hands-free telecommunication and automatic

meeting note taking.

Two main approaches have emerged for BSS. One is based on

independent component analysis and the other relies on the sparse-

ness of source signals. The proposed technique in this paper belongs

to the latter approach. Building on the sparse source assumption

each time frequency slot can be assigned to a single dominant source.

A frequently used approach to identify the dominant source is by

clustering amplitude and phase differences of closely spaced micro-

phone pairs [1]. This approach has been refined in various ways, e.g.

by using multiple microphones [2] and spatio-temporal filtering [3].

In this paper we propose a probabilistic framework similar to [4]

for the detection of the dominant source and the mixing system iden-

tification with an arbitrarily arranged microphone array and in the

presence of additive noise. As the source separation employs spa-

tial information, we suggest to use the complex Watson distribution

[5] to model the short time Fourier transform (STFT) coefficients of
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the microphone signals, a distribution frequently employed in direc-

tional statistics [6]. It is a bimodal distribution on the complex hy-

persphere with maxima at antipodal locations. The mixing system

identification turns into the Maximum Likelihood (ML) estimation

of the means and concentration parameters of a mixture of Watson

distributions. The estimation is solved with the EM algorithm, where

the hidden variable is the identity of the dominant source. In doing

so, all transfer function ratios from sources to sensors can be deter-

mined even if multiple sources are simultaneously active and even if

noise is present at all times.

2. PROPOSED METHOD

We are given an array of D microphones recording P speakers in

a reverberant enclosure. Let s1(n), . . . , sP (n) be the discrete-time

desired speech signal sources. The captured convolutive mixtures

x1(n), . . . , xD(n) are given by

xj(n) =
∑P

i=1

∑L

l=0
ℎij(l)si(n− l) + nj(n), (1)

where j = 1, . . . , D and ℎij(l) is the unknown impulse response

from source i to microphone j of length L and nj(n) is zero mean

noise at sensor j with unknown spatial and spectral statistics.

Using the STFT the mixture in (1) can be approximated by

Xj(m, k) =
∑P

i=1
Hij(k)Si(m, k) +Nj(m, k), j = 1, . . . , D

(2)

where Hij(k) is the transfer function (TF) from source i to micro-

phone j. Si(m, k) and Nj(m, k) are STFTs of the source and the

noise signals, respectively, where m is the time frame (block) index

and k denotes the frequency bin. In a more compact vector notation

the set of equations (2) is given by

X(m, k) =
∑P

i=1
Hi(k)Si(m, k) +N(m, k), (3)

where X = [X1, . . . , XD]T is the observation vector, Hi =
[Hi1, . . . , HiD]T is the vector of transfer functions (TF), and

N = [N1, . . . , ND]T is the noise vector.

For sparse signals, such as speech, it can be assumed that at

any time-frequency bin (m, k) only a single source is active (dom-

inant). This allows us to approximate the observation model (3) as

a hierarchical probabilistic model, where the first stochastic process

corresponds to the selection of the dominant source, and the second

to sampling a random vector according to the distribution of the cho-

sen source. To be specific, let Z(m, k) ∈ {1, . . . , P} be a hidden

random variable where Z(m, k) = i indicates that source i is active



in time-frequency point (m, k). We can then approximate (3) by

Z(m, k) = i :

X(m, k) = Hi(k)Si(m, k) +N(m, k). (4)

In the following each bin k is independently processed and vec-

tors of different frame indices m are assumed to be i.i.d. realizations

of the same random variable. For the ease of notation we will drop

the argument (m, k) in the next subsections wherever possible. Fur-

ther, statistical expectations will be approximated by averages over

the frame index m.

2.1. Spatial Whitening

To simplify subsequent statistical modeling we first carry out a spa-

tial whitening step. Let ΦNN = E
[

NN
H
]

be the power spectral

density (PSD) matrix of the stationary noise vector which can be

estimated in speech absence periods. Here, (⋅)H is the conjugate

transpose operator. The observation vector is spatially whitened by

X̃ = Φ
−

1

2

NN
X. (5)

If noise and source signals are uncorrelated and zero mean, this

prewhitening ensures that the conditional PSD matrix of the whitened

observation vectors X̃∣Z = i has the form

E
[

X̃X̃
H
∣

∣

∣
Z = i

]

= �2
i ⋅WiW

H
i + I (6)

where �2
i = E

[

∣Si∣
2] ⋅ ∣∣Φ

−
1

2

NN
Hi∣∣

2 and I is the identity matrix.

The normalized complex vector Wi keeping spatial informations is

given by

Wi = Φ
−

1

2

NN
Hi

/
∥

∥

∥

∥

Φ
−

1

2

NN
Hi

∥

∥

∥

∥

, (7)

where ∥⋅∥ denotes the Euclidean norm.

2.2. Probabilistic Modeling and EM Algorithm

Now we are going to describe the new statistical model of the

whitened and normalized observation vectors

Y = X̃

/
∥

∥

∥
X̃

∥

∥

∥
. (8)

The normalization to unit length corresponds to a mapping of the

data onto the unit hypersphere in D-dimensional complex vector

space. By this, the important spatial information is kept, while vari-

ations due to the scalar signal source are disregarded.

Due to the spatial diversity of the sources, feature vectors form

clusters on the hypersphere, where clusters in antipodal locations

correspond to the same source, since the sign is due to the scalar

source signal Si. The spatial whitening of the previous section en-

sures that the density of the normalized observation vector for a

given source is circular symmetric on the complex hypersphere.

We propose to model the conditional statistics of Y with the

complex Watson distribution [5]

p (Y∣Z = i;Wi, �i) =
(D − 1)!

2�D M (1, D, �i)
e�i ∣WH

i Y∣2 , (9)

where the mean orientation Wi is given by (7) and the concentration

parameter �i ≥ 0 is a function of �2
i and M(a, b, z) is the confluent

hypergeometric function of the first kind. The distribution is bipolar

for �i > 0. The greater the value of �i, the more the observations

Y are concentrated around the mean orientation ±Wi.

Using the hierarchical model suggested in (4) the statistics of

the feature vectors are characterized by a finite mixture of Watson

distributions

p (Y;Θ) =
∑P

i=1
�i p (Y∣Z = i;Wi, �i) , (10)

where Θ = {�1, . . . , �P ,W1, . . . ,WP , �1, . . . , �P } is the un-

known parameter set and �i = P (Z = i) are non-negative mixture

weights which sum to one.

Modeling the statistics of the feature vectors with (9) has two

advantages. Firstly, the inner product WH
i Y is equivalent to a spa-

tial correlation. Taking the absolute square of this implies that we

are using the response power of the spatial matched beamformer as

a distance measure to separate the sources. This concept naturally

fits to the beamforming point of view. Secondly, the morphology of

the complex hypersphere perfectly reflects spatial aliasing occurring

in high frequencies, hence the cyclic nature of the phase differences

are implicitly regarded.

Now we apply the EM algorithm to derive a ML estimator for

the unknown parameter set. Let Θ̂(�) denote the estimate at iteration

�. Further let Y = {Y(1), . . . ,Y(T )} be the data set consisting of

T independently drawn feature vectors following the mixture model

(10) and let Z = {Z(1), . . . , Z(T )} be the set of corresponding

hidden random variables indicating the dominant source in the re-

spective time frequency slot.

The conditional expectation over of the complete data log-

likelihood is then given by

J = E
[

log p (Y,Z;Θ)
∣

∣

∣
Y; Θ̂(�)

]

(11)

=
T
∑

m=1

P
∑

i=1


i(m) log �̂
(�)
i +

T
∑

m=1

P
∑

i=1


i(m) log p
(

Y(m)
∣

∣

∣
Z(m) = i;Ŵ

(�)
i , �̂

(�)
i

)

. (12)

Here, 
i(m) is the posterior probability of the i-th source being

dominant, which is computed in the E-step according to


i(m) = P
(

Z(m) = i
∣

∣

∣
Y(m); Θ̂(�)

)

=
p
(

Y(m)
∣

∣

∣
Z(m) = i;Ŵ

(�)
i , �̂

(�)
i

)

�̂
(�)
i

∑P

l=1 p
(

Y(m)
∣

∣

∣
Z(m) = l;Ŵ

(�)
l , �̂

(�)
l

)

�̂
(�)
l

. (13)

The M-step is taken by maximization of the objective function

(11) with the constraints ∣∣Ŵ
(�+1)
i ∣∣ = 1, i = 1, . . . , P to ensure

unit normalization of the mean orientations and
∑P

i=1 �̂
(�+1)
i = 1.

We obtain the following update equations for Θ̂(�+1):

ΦYY,i Ŵ
(�+1)
i = �i Ŵ

(�+1)
i (14)

�̂
(�+1)
i =

1

T

∑T

m=1

i(m) (15)

M
(

2, D + 1, �
(�+1)
i

)

D ⋅M
(

1, D, �
(�+1)
i

) =
Ŵ

(�+1),H
i ΦYY,iŴ

(�+1)
i

�̂
(�+1)
i

, (16)

for i = 1, . . . , P . Here, �i is a complex constant and the power

spectral density matrix ΦYY,i is obtained by

ΦYY,i =
1

T

∑T

m=1

i(m) Y(m)YH(m). (17)



Observe that (14) is an eigenvalue equation. Thus, the ML esti-

mate of the mean orientation is the eigenvector corresponding to the

largest eigenvalue of the power spectral density matrix ΦYY,i.

The reestimation formula (16) for the concentration parameter is

more complicated, as it requires the solution of an implicit equation

involving the ratio of confluent hypergeometric functions. As it is

not possible to obtain a closed form solution, one has to resort to

numerical approximations (see [5]).

Starting with an initial guess, the E-step (13) and the M-step

(14) - (16) are iterated until no significant changes of the estimates

occur. We denote the estimates of the parameter set in steady state

by Θ̂
(∞).

Note that the solution of (14), i.e. the principal eigenvector

Ŵ
(∞)
i , is only unique up to an arbitrary complex scalar. Thus, also

the true source-to-sensor transfer functions Hi(k) cannot be deter-

mined uniquely, but rather

Ĥi(k) := Φ

1

2

NN
Ŵ

(∞)
i (k) = �i(k)Hi(k) (18)

where �i(k) is an arbitrary complex scaling constant. In other words

only transfer function ratios can be determined. The argument k has

been included in (18) to highlight the fact that the scaling constant

�i(k) may be frequency dependent, resulting in an arbitrary filtering

operation. This is the well-known scaling problem in BSS literature.

The relation of the proposed method to the MaxSNR beam-

former presented in [7] is revealed by inserting (8), (5) and (17) in

equation (14). After some algebra we obtain the equivalent equation

ΦXX,iF̂i = �ΦNNF̂i, (19)

where F̂i = Φ
−1
NN

Ĥi and

ΦXX,i =
1

T

∑T

m=1

i(m)

X(m)XH(m)

XH(m)Φ−1
NN

X(m)
. (20)

This is almost identical to the generalized eigenvalue problem to be

solved in a beamformer which attempts to maximize the signal-to-

noise ratio at the beamformer output (MaxSNR beamformer). The

only difference is the presence of the posterior 
i(m), which is the

probability that the i-th source is the dominant source for the obser-

vation X(m). In the single source beamforming scenario studied in

[7] this term always equals one.

2.3. Permutation Alignment, Separation and Noise Suppression

Since the separation is carried out in each frequency bin separately,

we have to solve the permutation problem, which is typical for fre-

quency domain BSS approaches. We use the correlation among the

posteriors 
i(m, k) (13) in each frequency bin to solve the permuta-

tion problem. We expect that the correlation of posteriors in different

bins is high if the two bins are excited by the same source. This is in

particular valid for adjacent bins or frequency bins in harmonic re-

lation. Permutation alignment is accomplished by finding mappings

which minimize the inter frequency correlation of different outputs.

Since a detailed algorithm derivation for permutation alignment is

not the focus of this paper we refer to known methods, e.g. [4] and

assume in the following that the permutation problem is solved.

One approach to reconstruct the source signals, which can also

be applied in underdetermined BSS problems (P > D), is to use the

posteriors 
i(m, k) as soft masks, replacing binary masks, which

were e.g. used in [1]. This approach, however, may suffer from

musical tones. Since in our applications we are usually concerned

with overdetermined BSS (P < D), we describe in the following a

spatio-temporal filtering approach to recover the source signals. As

this approach has been described in more detail in [8] and [3] we

will only give a brief outline.

The approach is based on a GSC-like beamforming structure as

depicted in figure 1.

X
FB F

H
FB,1

FB F
H
FB,P

BM B
H

V

ANC 1

ANC P

YFB,1

YFB,P

ŝ1

ŝP

Fig. 1. GSC-like structure consisting of fixed beamformer (FB),

blocking matrix (BM) and adaptive noise canceller (ANC)

The fixed beamformer (FB) outputs YFB,i(m, k), i = 1, . . . , P
and the noise reference signals V(m, k) are computed by

YFB,i(m, k) = F
H
FB,i(k)X(m, k), (21)

V(m, k) = B
H(k)X(m, k), (22)

where FFB,i and B are obtained from a Gram-Schmidt orthogonal-

ization of the identified mixing system. To simplify notation we il-

lustrate this process for the computation of the output correspond-

ing to the P -th source. First, the intermediate coefficients Ui(k),
i = 1, . . . , P are computed recursively. The recursion is initialized

by

U1(k) = Ĥ1(k)
/
∥

∥

∥
Ĥ1(k)

∥

∥

∥
. (23)

Then for i = 1, . . . , P − 1:

Ũi+1(k) = Ĥi+1(k)−
∑i

1

(

U
H
i (k)Ĥi+1(k)

)

Ui(k) (24)

Ui+1(k) = Ũi+1(k)
/
∥

∥

∥
Ũi+1(k)

∥

∥

∥
. (25)

Unfortunately, the resulting filter coefficients UP (k) have no

constraint for target direction gain, since the scaling problem in

equation (18) still remains. An approximative solution to this issue

is achieved by the normalization

FFB,P (k) = UP (k)
/(

D
H
P (k)UP (k)

)

, (26)

where DP (k) = [1, e−j!k�P,2 , ..., e−j!k�P,D ]T is the steering vec-

tor and �P,j is the time difference of arrival (TDOA) between the

the first and j-th sensor when source P is dominant. Estimates of

�P,j are obtained by searching for the maximum of the cross cor-

relation of the impulse responses corresponding to the first and the

j-th estimated room transfer function [3].

Using equation (21) with the coefficients given by (26) amounts

to placing spatial nulls at the interferers’ directions, while preserving

a distortionless response to the P -th source signal. Alternatives to

the gain normalization (26) have been studied in [7].

Finally, the coefficients of the blocking matrix (BM) are ob-

tained by

B
H(k) = I−

∑P

i=1
Ui(k)U

H
i (k). (27)

It should be noted that BH(k) is equal for all P beamformers, hence

a single BM provides the noise-only references for all adaptive noise

cancellers, which in turn are updated in speech absence periods only.



3. SIMULATION RESULTS

We performed experiments for a simulated meeting situation with

P = 3 sources and D = 8 microphones in an enclosure with

varying reverberation times T60. Sources are placed at a distance

of 1m around a uniform circular array of 0.1m radius. The physi-

cal conditions are similar to the setup in [9]. The source signals were

recordings of 25 s length obtained from concatenating sentences ran-

domly drawn from the TIMIT database at 16KHz sampling rate.

To simulate coherent noise, fan noise recordings of a video projec-

tor were placed as an additional source in the room. Furthermore,

white noise at the level of 30 dB below the source signal power was

added to all sensors. A minimum statistics based voice activity de-

tection (VAD) was used. Initial mean orientations are set to random

values and initial concentration parameters are set to �
(0)
i = 20.

The STFT frame size corresponds to 64ms with 64/4ms frame

shift. The system performance was evaluated in terms of signal-to-

interference-ratio (SIR) gain, signal-to-noise-ratio (SNR) gain and

signal-to-distortion-ratio (SDR)

SIR := 10 log10
(

E
[

ŝ2(t)
] /

E
[

s̃2(t)
])

(28)

SNR := 10 log10
(

E
[

ŝ2(t)
] /

E
[

ñ2(t)
])

(29)

SDR := 10 log10
(

E
[

ŝ2(t)
] /(

E
[

(ŝ(t)− aś(t− �))2
]))

(30)

where ŝ(t) is the target signal component, s̃(t) is the interferers’

component and ñ(t) is the noise component at the systems output.

The reference for gain measurement was the input signal at the first

sensor. The reference ś(t) for the speech distortion measurement

was the output of a perfectly steered delay-and-sum beamformer.

The parameters a and � were chosen to compensate the amplitude

and delay differences.

Figure 2 shows the simulation results as a function of room re-

verberation time T60. We achieved a good suppression of the inter-

fering sources in low reverberation conditions and at moderate noise

levels. At high noise levels (0 dB) we observe a significant drop

in SIR gain. A detailed analysis of this behavior uncovers that this

is caused by wrong VAD decisions. As expected, separation per-

formance decreases for higher reverberation times where the mul-

tiplicative transfer function approximation (2) and the sparse source

assumption (4) become less accurate. Noise suppression is very large

at low reverberation times and surprisingly good even at high rever-

beration times.

Speech quality evaluation shows good results in low reverbera-

tion conditions. At high reverberation time the SDR measurement

has to be viewed with caution since a fair quantitative comparison

especially in reverberant environment is difficult. In hearing tests

speech quality was considered to be good.

4. CONCLUSION

We introduced a new statistical model for blind speech separation,

from which dominant source detection in each time frequency bin

and mixing system identification algorithms are obtained as an in-

stance of the Expectation Maximization algorithm. We confirmed

by simulations that the approach works well in low to medium re-

verberation environments. The good results encourage us to further

explore the potentials of directional statistics for approaching source

separation and beamforming problems.
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Fig. 2. SIR Gain, SNR Gain and SDR for 3 sources and 8 sensors at

different reverberation times and input coherent noise levels.
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