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Abstract—In this contribution we provide a unified treatment
of blind source separation (BSS) and noise suppression, two tasks
which have traditionally been considered different and for which
quite different techniques have been developed. Exploiting the
sparseness of the sources in the short time frequency domain
and using a probabilistic model which accounts for the presence
of additive noise and which captures the spatial information of
the multi-channel recording, a speech enhancement system is
developed which suppresses noise and simultaneously separates
speakers in case multiple speakers are active. Source activity
estimation and model parameter estimation form the E-step
and the M-step of the Expectation Maximization algorithm,
respectively. Experimental results obtained on the dataset of the
Signal Separation Evaluation Campaign 2010 demonstrate the
effectiveness of the proposed system.

I. INTRODUCTION

Exploiting the sparseness of source signals in the short

time frequency domain is a popular approach for blind source

separation (BSS). In this approach each time-frequency (T-

F) slot can be assigned to a single dominant source using

spatial cues, e.g. [1] [2]. Recently, methods based on the

Expectation Maximization (EM) framework for the detection

of the dominant source and the mixing system identification

emerged showing good separation results even under reverber-

ant conditions, [3] [4].

In sparseness based BSS it is common to assume the

absence of additive noise. Hence, the system performance can

severely deteriorate if the noise level is significant. Actually

stationary noise cannot be considered as an additional source,

since noise is typically present in all T-F slots thus violating

the sparseness assumption. In case of diffuse noise it also has

very different spatial characteristics compared to the sources.

On the other hand the estimation of noise is the fundamental

issue treated in the speech enhancement literature where

complex spatial and spectral filtering approaches have been

developed, e.g. [5]. A crucial issue is the estimation of the

speech presence probability which is required to estimate the

noise spectrum. This can be achieved by using solely spectral

cues [6] or spatial and spectral cues in the case of multi-

channel recordings, e.g. [7].

In this paper we propose to use the same modeling frame-

work for dominant source detection and speech presence prob-

ability estimation. We model the normalized short time Fourier

transform (STFT) coefficients of the microphone signal as a

mixture of (P + 1) complex Watson distribution, where P
is the number of active speech sources. We have proposed

a Watson mixture model earlier [4] as it allows to capture

the spatial information important for source separation, while

disregarding the amplitudes, which are mainly determined by

the scalar source signal. The additional (P +1)-st distribution

is omnidirectional and meant to model the additive noise after

spatial whitening. We employ the EM algorithm where in the

E-step the speech presence probability or dominant source

identity is estimated, while the parameters, such as source-

to-microphone transfer functions ratios (TFR), are estimated

in the M-step. These estimates are then employed for spatial

beamforming and further spectral speech enhancement.

II. FRAMEWORK

We consider a mixture of P independent source signals

Si(m, k), i = 1, . . . , P , captured by D microphones as

Xj(m, k), j = 1, . . . , D in the STFT domain, where in a

reverberant environment the signal path from source i to

microphone j is characterized by a multiplicative transfer

function (MTF) Hij(k). Here, m is the time frame index and

k denotes the frequency bin. Additionally, the microphone

signals Xj(m, k) are corrupted by additive noise Nj(m, k).
Using vector notation we have

X(m, k) =
∑P

i=1
Hi(k)Si(m, k) +N(m, k), (1)

where X = [X1, . . . , XD]T is the observation vector,

Hi = [Hi1, . . . , HiD]T is the vector of MTFs, and N =
[N1, . . . , ND]T is the noise vector.

For sparse signals such as speech it is reasonable to assume

that at any T-F slot (m, k) only a single source is active.

Consequently, the observation model (1) can be reformulated

as a doubly stochastic process with a hidden random variable

Z(m, k) ∈ {0, . . . , P}:

Z(m, k) = 0 :

X(m, k) = N(m, k) (2)

Z(m, k) = i, i = 1, . . . , P :

X(m, k) = Hi(k)Si(m, k) +N(m, k), (3)

where Z(m, k) = i with i = 1, . . . , P indicates that source i
is active and Z(m, k) = 0 indicates that only noise is present

in a given T-F slot (m, k).

The proposed system processes each bin k independently.

Therefore, we will drop the argument k in the next subsections

for the sake of a simpler notation.



III. SEPARATION USING EM ALGORITHM

An important intermediate goal in BSS is to uncover the

hidden variable Z(m, k) and to identify the unknown mixing

system solely from the observations X. This can elegantly be

achieved by the EM algorithm.

Let ΦNN = E
[

NN
H
]

be the power spectral density (PSD)

matrix of the stationary noise vector which can be estimated in

speech absence periods. Here, (⋅)H is the conjugate transpose

operator. Our statistical modeling involves spatial whitening

and unit-norm normalization

X̃(m) = Φ
−

1

2

NN
X(m) (4)

Y(m) = X̃(m)
/∥

∥

∥
X̃(m)

∥

∥

∥
, (5)

where ∥⋅∥ denotes the Euclidean norm. The whitening ensures

that the conditional PSD matrix of the whitened observation

vectors X̃∣Z = i has the form

E
[

X̃X̃
H
∣

∣

∣
Z = i

]

= �2
i ⋅WiW

H
i + I (6)

where �2
i = E

[

∣Si∣
2
]

⋅ ∣∣Φ
−

1

2

NN
Hi∣∣

2 and I is the identity

matrix. The normalized complex vector Wi contains the

spatial informations and is given by

Wi = Φ
−

1

2

NN
Hi

/
∥

∥

∥
Φ

−
1

2

NN
Hi

∥

∥

∥
. (7)

The normalization to unit length corresponds to a mapping

onto the unit hypersphere in D-dimensional complex vector

space. By this, the important spatial information is kept, while

variations due to the scalar signal source are disregarded.

The spatial diversity of the sources assures the formation of

distinct clusters on the hypersphere, where clusters in antipodal

locations correspond to the same source, since the sign is due

to the scalar source signal Si.

Recently, we have proposed to model the statistics of the

feature vectors Y for speech present T-F slots with a mixture

of complex Watson probability density functions (PDF) [4].

While in [4] and also in the common BSS literature, e.g. [1] [2]

[3], noise only T-F slots are ignored we suggest to model this

case by an uniform distribution on the complex hypersphere

in this paper. This is reasonable due to the spatial whitening

in (4) which constrains the conditional PSD matrix of noise

only slots to E
[

X̃X̃
H

∣

∣

∣
Z = 0

]

= I. Consequently, we have

p (Y;Θ) =
∑P

i=0
ci p (Y∣Z = i;Wi, �i) , (8)

where Θ = {c0, . . . , cP ,W0, . . . ,WP , �0, . . . , �P } is the

unknown parameter set and ci = P (Z = i) are non-negative

mixture weights which sum to one. The mixture components

are given by complex Watson PDFs [8]

p (Y∣Z = i;Wi, �i) =
(D − 1)!

2�D M (1, D, �i)
e�i ∣WH

i
Y∣

2

, (9)

where the mean orientation Wi is defined in (7), �i is

the concentration parameter and M(a, b, z) is the confluent

hypergeometric function of the first kind. The greater the value

of �i, the more the observations Y are concentrated around the

mean orientation ±Wi. For Z = 0 we set the concentration

parameter to �0 = 0 with an arbitrary W0 to get a uniform

distribution.

The E-step is equivalent to the estimation of the complete-

data sufficient statistics which is given by the source dependent

PSD matrices

Φ
(�)
YY,i =

1

T

∑T

m=1


(�)
i (m) Y(m)YH(m) (10)

and the expected class occurrence probability

c̃i =
1

T

∑T

m=1


(�)
i (m). (11)

Here



(�)
i (m) = P

(

Z(m) = i
∣

∣

∣
Y(m); Θ̂(�)

)

=
p
(

Y(m)
∣

∣

∣
Z(m) = i;Ŵ

(�)
i , �̂

(�)
i

)

ĉ
(�)
i

∑P

l=0 p
(

Y(m)
∣

∣

∣
Z(m) = l;Ŵ

(�)
l , �̂

(�)
l

)

ĉ
(�)
l

(12)

is the a posteriori probability based on the parameter set Θ̂(�),

and � is the iteration counter.

Parameter reestimation in the M-step can now by carried

out using (10) and (11). The update of the mixing weights is

trivially obtained by

ĉ
(�+1)
i = c̃i. (13)

The update equation for the mean orientation is given by

eigenvalue equations

Φ
(�)
YY,i Ŵ

(�+1)
i = �

(�+1)
i Ŵ

(�+1)
i , (14)

where the eigenvectors corresponding to the largest eigen-

values �i of the source dependent PSD matrices Φ
(�)
YY,i are

efficiently computed with the power iteration method [9].

Estimates for the concentration parameters are recalculated by

�
(�+1)
i = �−1

D

(

�
(�+1)
i

ĉ
(�+1)
i

)

, (15)

where � = �−1
D (�) is the inverse of the function

� = �D(�) =
M (2, D + 1, �)

D ⋅M (1, D, �)
. (16)

Since �D(�) is a ratio of confluent hypergeometric functions

there is no analytical inverse function. Hence, we fall back on

spline based function approximations for low concentrations

and the approximation �−1
D (�) ≈ (D − 1)/(1 − �) for high

concentrations [8]. In Fig. 1 the curves of �−1
D (�) for various

numbers of sensors D are plotted.
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Fig. 1. Shape of �−1
D

(�) for various number of sensors D

Starting with an initial guess, the E-step (10) - (12) and



the M-step (13) - (15) are iterated until no significant changes

of the estimates occur. We will denote the estimates of the

parameter set in steady state by Θ̂
(∞).

IV. PERMUTATION ALIGNMENT AND BEAMFORMING

Since the EM algorithm is carried out in each frequency

bin separately we are suffering from arbitrary ordering of the

clusters in each bin. In order to properly reconstruct separated

signals in the time-domain, clusters originating from the same

source in frequency-domain should be aligned together. This

well known problem in frequency domain BSS can be solved

by finding mappings which minimize the inter frequency cor-

relation among the posteriors 
i(m, k) of different clusters. We

refer to [10] and assume in the following that the permutation

problem is solved.

Besides the revelation of the hidden variable Z another

benefit of the EM algorithm is that it provides a maximum

likelihood blind mixing system identification as we can obtain

estimates of the mixing system by

Ĥi =
Φ

1

2

NN
Ŵ

(∞)
i

∥

∥

∥
Φ

1

2

NN
Ŵ

(∞)
i

∥

∥

∥

, i = 1, . . . , P. (17)

Note that these are just estimates of the source-to-sensor trans-

fer function ratios (TFR), not the transfer functions themself,

as an eigenvector may have an arbitrary scaling [11].

For reconstruction of the source signals we first apply a

spatial filtering with

S̃i(m) = F
H
i X(m). (18)

The TFR estimates are used to compute the minimum variance

beamforming coefficients by

Fi =
Φ

−1

XX
Ĥi

ĤH
i Φ

−1

XX
Ĥi

, (19)

where ΦXX = E
[

XX
H
]

. In a practical setup it is necessary

to apply diagonal loading with a small constant on ΦXX

for stability reasons and to control the effect of noise and

interference suppression.

V. POSTFILTERING AND SYSTEM OVERVIEW

To further enhance the signals produced by spatial filtering

we apply a spectral subtraction based postfiltering which

requires an estimator for residual noise and crosstalk power

�i present in S̃i(m). A common practice for this is to apply

recursive averaging

�i(m) =
(

1− �i(m)
)

�i(m− 1) + �i(m)
∣

∣

∣
S̃i(m)

∣

∣

∣

2

, (20)

where the time variant smoothing factor �i(m) is dependent

on the target speech presence probability. A reasonable value

for �i(m) can be obtained as follows

�i(m) = �max

(

1− 

(∞)
i (m)

)

, (21)

where �max is some maximum learning rate. So, if the i-th

source is dominant (

(∞)
i is large), the current beamforming

output S̃i(m) is disregarded for the update of the estimate

of the distortion in the i-th beamformer output. Observe that

while transient noise components are problematic in single

channel speech enhancement our system can benefit from

spatial informations to cope with these distortions.

The final estimate of the clean target signal STFT is given

by

Ŝi(m) = Gi(m) S̃i(m), (22)

where Gi(m) is the gain function. In this paper we employ

the Wiener filter gain

Gi(m) = max

{

�i(m)

1 + �i(m)
, Gmin

}

, (23)

where �i is the a priori SNR. The lower bound Gmin of the

gain has to be chosen as a compromise between reduction of

musical tones and suppression of noise and interferes. The a

priori SNR is estimated in the well known decision-directed

way [12]

�i(m) = �

∣

∣

∣
Ŝi(m− 1)

∣

∣

∣

2

�i(m− 1)
+ (1− �)max {�i(m)− 1, 0} ,

(24)

where the weighting factor � controls the trade-off between

residual perturbation suppression and distortion of speech

transients. �i(m) is the a posteriori SNR

�i(m) =

∣

∣

∣
S̃i(m)

∣

∣

∣

2

�i(m)
. (25)

In Fig. 2 a flow chart of the proposed integrated BSS and

noise suppression system is depicted. If we run the system

in single source mode, P = 1, the permutation alignment

block can be omitted. A voice activity detection (VAD) is

required for estimation of the noise-only PSD matrix ΦNN

in the spatial whitening step (4). Note that the VAD is much

simpler than the frequency bin wise determination of 

(∞)
0 (m)

performed by the EM algorithm and still serves our purpose

well, since only a coarse detection on a frame basis is required.

VI. EVALUATION

The algorithm is evaluated on the ”Source separation in

the presence of real-world background noise” task of the

second signal separation evaluation campaign (SiSEC2010)

[13]. The SiSEC2010 task consists of three different live

recorded scenarios: Square (Sq), Cafeteria (Ca) and Subway

(Su). In all scenarios the noise is spatially and spectrally

nonstationary. We focus here on the development dataset with

D = 4 linearly arranged microphones with 8.5 cm spacing,

since we need access to the contribution of each source and

that of noise in order to evaluate performance. The number of

sources are P = 1 and P = 3 to demonstrate single source

signal enhancement mode and BSS mode. All signals are 10 s
long and sampled at 16KHz. In Table I system parameters are

summarized.

The system performance was evaluated in terms of signal-

to-interference-ratio (SIR), signal-to-noise-ratio (SNR), signal-

to-distortion-ratio (SDR) and signal-to-artifacts-ratio (SAR) as

proposed in [14].
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Fig. 2. Flow chart of proposed BSS approach

Audio examples and detailed system performance of the

separation and speech enhancement are available at [15].

In Table II system performance is summarized. For proper

assessment we also provide baseline input SIR and input

SNR measured at the second microphone. We observed ex-

cellent source separation performance at the output in low

reverberation conditions in the (Sq) scenario. As expected

separation performance degrades for higher reverberation in

(Ca) and (Su). The consistent good noise suppression in all

conditions, despite their different reverberation time, could

be an indication that noise is mostly diffuse in the dataset.

Informal listening tests confirm good audio quality indicated

by SDR and SAR, where in some cases musical tones are

present.

Frame length: 1024 �max = 0.05
Frame shift: 256 � = 0.92
Window type: Hamming Gmin = 0.1

TABLE I
SYSTEM PARAMETERS

Scenario Input Output
SIR SNR SIR SNR SDR SAR

Square (3 sources) -3.49 4.14 24.04 20.54 11.37 12.73
Cafeteria (3 sources) -3.30 8.19 12.59 23.56 7.62 10.63
Subway (3 sources) -3.81 1.75 9.17 21.62 5.70 10.63

Square (1 source) - -0.37 - 14.87 9.94 12.15
Cafeteria (1 source) - 5.26 - 19.25 12.12 13.24
Subway (1 source) - 0.67 - 21.06 13.29 14.22

TABLE II
AVERAGED PERFORMANCE RESULTS ON THE DEVELOPMENT DATASET

VII. CONCLUSION

In this paper, we proposed a novel unified approach for blind

source separation and speech enhancement. Based on a sparse-

ness model for the observations we derived an EM algorithm

for blind system identification and dominant source activity

detection. This information is exploited in a beamforming

and postfiltering system for spatial and spectral filtering. The

algorithm demonstrates its ability to cope with the challenging

conditions of SiSEC2010 where a significant amount of noise

is present.

In future research we will focus on the examination of

under-determined source separation, usage of more sophisti-

cated gain functions and additional tracking for highly spa-

tially non-stationary noise in speech present frames. Addition-

ally, a block-online implementation of the EM algorithm and

tuning towards low latency system behavior is preferable for

many applications.
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