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Abstract—In this paper we present a robust location estimation
algorithm especially focused on the accuracy in vertical position.
A loosely-coupled error state space Kalman filter, which fuses
sensor data of an Inertial Measurement Unit and the output
of a Global Positioning System device, is augmented by height
information from an altitude measurement unit. This unit consists
of a barometric altimeter whose output is fused with topographic
map information by a Kalman filter to provide robust informa-
tion about the current vertical user position. These data replace
the less reliable vertical position information provided the GPS
device. It is shown that typical barometric errors like thermal
divergences and fluctuations in the pressure due to changing
weather conditions can be compensated by the topographic map
information and the barometric error Kalman filter. The resulting
height information is shown not only to be more reliable than
height information provided by GPS. It also turns out that it leads
to better attitude and thus better overall localization estimation

accuracy due to the coupling of spatial orientations via the
Direct Cosine Matrix. Results are presented both for artificially
generated and field test data, where the user is moving by car.

Index Terms—Loosely-coupled error state space Kalman filter,
Inertial Measurement Unit, Barometric heigth estimation, Error
filtering, Map-Matching.

I. INTRODUCTION

In the last years, vehicle positioning has become more

and more important, as many emerging applications rely

on accurate vehicle location information, such as Car-2-Car

communication or traffic and fleet management systems, to

name just a few.

Most vehicle positioning approaches are based on a com-

bination of sophisticated sensors and external data sources.

Often a GPS device is used to sustain data of an Inertial

Measurement Unit (IMU) by the strapdown calculation [1],

[3], [5]. The accuracy of the position estimates depends on

the quality of the GPS pseudorange (range from satellite to

user measured by envelope delay) and optional deltarange

measurements (relative velocity measurement due to Doppler

effect) as well. A well known disadvantage of GPS systems is

that they provide less accurate information about the vertical

position. The standard deviation of the error of the estimated

height is often more than 10m [4]. This is a deficit considering

a situation, where a car is to be tracked, which is located on a

bridge when crossing another street. Another example which

asks for accurate height information is a traffic management

system which has to guide the driver to a free parking lot in

a multi-level parking garage. In areas, where the visibility of

satellites is limited by high buildings, even complete dropouts

of the GPS signal can occur [6]. Another challenging but

nevertheless important area is indoor navigation, where a GPS

signal is often unavailable. In this case, the computation of the

attitude depends on the IMU, which quickly leads to unreliable

track estimates. In all these situations additional sensor devices

are required to support the localization. A barometer could be

one such device, as it is cheap and often delivers more precise

vertical position information than GPS.

In this paper we consider a loosely-coupled error state space

Kalman filter, where IMU sensor information (gyroscope,

magnetometer and accelerometer), GPS satellite based position

information and barometric altitude information are jointly

used. Before fusion in the error state space Kalman filter, the

errors of the barometer data, which e.g. result from weather

conditions (changes in temperature and pressure) are reduced

by a second Kalman filter, which is supported by topographic

map data. This means, that if the estimated horizontal position

corresponds to a location, for which height information is

available from the topographic map, both the height reading

of the map and the barometer output are used for the current

error filtering step. To find this out we compare the current user

position with the horizontal positions in a database, storing the

topographic information. This is necessary since a topographic

map provides height information only for certain horizontal

positions. However, the information obtained from topographic

maps are often more accurate than comparable information of

street maps used in combination with GPS based positioning.

In most low cost navigation applications map information is

not used. The vertical position is obtained from the GPS device

directly.

This paper is organized as follows. In the next section

we explain our artificial data generation system comprising

error modeling for the IMU and the GPS. Further, we provide

some details about the field measurements also used in this

paper. The loosely-coupled error state space Kalman filter

for the correction of the IMU data is described in detail in

section III. The Kalman filtering with map-matching for the

height estimation is explained in section IV. There we will go

into details about barometric height estimation and explain

how the errors depend on weather conditions. We present

results concerning the performance of the algorithm compared

to a non-barometric aided loosely-coupled filter in section V.

Further, we consider the performance during GPS dropouts.



Results are given for the artificially generated data and real-

world measurements recorded in field tests. The paper finishes

with conclusions drawn in section VI.

II. DATA GENERATION

As a sufficient amount of field data was not available we

also generated artificial sensor data of a GPS and IMU device

to assess the performance of the proposed approach for sensor

fusion.

A. Artificial Data Generation

We assume that the IMU consists of a magnetometer, an

accelerometer and a gyroscope for measuring angular veloci-

ties. These devices can be found in most vehicles, e.g. to be

used for the electronic stability program (ESP).

1) Ideal Trajectory and IMU Measurements: For the gen-

eration of trajectories we used an interaction between three

different linear moving models: ’constant velocity’, ’constant

acceleration’ and ’turning’ motion (fig. 1) [6]. Note, that all

vectors in the chart are time-dependent, which we did however

not indicate in the notation for simplicity reasons. The system
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Fig. 1. Data generation chart for the IMU (DCM: Direct Cosine Matrix).

expects at its input the Euler angle vector µ = [φ, θ, ψ]T

as well as the velocity and acceleration vectors vn
ib and an

ib.

The indices denote the velocity or acceleration vector of the

body motion in body frame b with respect to the inertial

navigation frame i given in coordinates of the n-frame (also

known as NED-frame) with the coordinate axes north, east and

down. After the generation of the ideal trajectory the required

Direct Cosine Matrices (DCMs) transforming data from one

coordinate system into another are computed for further use.

The earth rotation and the craft-rate ωb
en in body coordinates is

incoporated in the data generation as well as the coriolis force

ab
c and gravity vector gb. All vectors, the ideal magnetometer

data mb, the angular velocities ωb
ib and the linear accelerations

ab
ib are then distorted by scaling errors Sa, Sω and Sm, biases

ba, bω and bm and noise terms wa, wω and wm to obtain the

simulated sensor data m̃b, ãb
ib and ω̃b

ib. The biases of angular

velocity and linear acceleration are modeled by random walk

processes according to

ba(k) = ba(k − 1) + ηa(k) ·
√

∆t (1)

bω(k) = bω(k − 1) + ηω(k) ·
√

∆t, (2)

while bm is set to zero (bm = 0), which means that we neglect

the bias of the magnetometer in the following. ∆t denotes the

IMU sampling time.

The vectors ηa and ηω are zero mean Gaussians with

(3 × 3) covariance matrices σ2
ba

and σ2
bω

. The inherent noise

terms wω, wa and wm are assumed to be each zero mean

with variances σ2
ω, σ2

a, and σ2
m, respectively: wω(k) ∼

N (0,σ2
ω),wa(k) ∼ N (0,σ2

a),wm(k) ∼ N (0,σ2
m). The

scaling factor matrices Sa, Sω and Sh are assumed to be

diagonal, i.e. we assume that there is no misalignment between

the individual sensor axes. Further, the matrices are assumed

to be known at receiver side.

2) GPS Measurements: The GPS reference data generation

and measurement simulation block contains a Kalman filter

as is used in a typical GPS receiver. First, we generate typ-

ical satellite positions by using ideal Kepler parameters with

respect to the current user location. Then we produce pseu-

dorange and deltarange measurements incorporating, among

others, ionospheric, tropospheric and thermal effects. Also

multipath errors are incorporated. These measurements are

merged in the vector zp,d, which is input to the GPS Kalman

filter, which estimates the user longitude λ and latitude ϕ, the

corresponding velocities and the receiver clock drift, which can

be used as measurements for the successive filter algorithms.

Here, we only use the position and velocity estimates merged

in vector x̂GPS, as well as the estimation error covariance

matrix P̂GPS as described in the following sections.

3) Barometric Measurements: In a realistic environment the

height can be approximately calculated by measurements of air

pressure p and temperature T as we will see in the following.

To obtain realistic values for the pressure p and the temperature

T for the artificial trajectories we also use random walk models

for the reference values, where k denotes the sampling time:

p0(k) = p0(k − 1) + ηp0(k) ·
√

∆t (3)

T0(k) = T0(k − 1) + ηT0(k) ·
√

∆t (4)

with ηp0(k) ∼ N (0, σ2
p0

) and ηT0(k) ∼ N (0, σ2
T0

), where σ2
p0

and σ2
T0

are the variances of the normally distributed noise

terms ηp0 and ηT0 . Note, that these equations only model the

variations of pressure and temperature at reference height h0 =
0m. The linear approximation between height (atmosphere)

h(k) and temperature is given by

T (k) = T0(k) − a ·
(

h(k) − h0

)

, (5)

where a is the positive lapse rate and h(k) the height at

time instance k. The following well known formula for the



isothermal atmosphere is now used to compute the pressure

ph(k) for some height h(k) [8]:

ph(k) = p0(k) ·
(

1 − a · ∆h(k)
T0(k)

)

M·g(ϕ(k))
R·a

, (6)

where ∆h(k) = h(k) − h0 and where M is the molar mass,

g(ϕ) the gravity, depending on the current latitude ϕ of the

user and R is the universal gas constant, respectively.

The artificial measurements are then computed by

p̃h(k) = ph(k) + wph
(k), T̃ (k) = T (k) + wT (k), (7)

where wph
(k) and wT (k) are normally distributed random

variables with zero mean and variance σ2
ph

and σ2
T , respec-

tively: wph
(k) ∼ N (0, σ2

ph
), wT (k) ∼ N (0, σ2

T ).
By using the formula for the isothermal atmosphere again,

we get a measurement zh(k) for the barometric height by

solving

p̃h(k) = p0(0) ·
(

1 − a · zh(k)

T0(0)

)

M·g(ϕ(k))
R·a

. (8)

for zh(k). Note, that in contrast to eq. (6) we use the

constant values p0(0) and T0(0) in eq. (8), since in a realistic

environment, we would not have any knowledge about p0(k)
and T0(k), respectively.

B. Field Data

We also used real-world measurements of an IMU, an

altimeter and a GPS device to verify the experimental results

based upon the artifically generated data. The Inertial Measure-

ment Unit is a MotionNode device from GLI Interactive LLC.

The GPS device (Navilock NL-402U) contains an ublox5

chipset, providing position and velocity estimates with a

maximum rate of 4 Hz. The barometer is an OAK USB sensor

device from Toradex, which provides pressure and temperature

estimates at a rate of 10Hz. The synchroneous recording of

all information is handled by an external timer to guarantee

that the synchronisation error is less than 1 × 10−9 s.

III. LOOSELY-COUPLED ERROR STATE SPACE KALMAN

FILTERING

A loosely-coupled error state space filter is often used in

the context of IMU based navigation [2]. Fig. 2 shows the

Kalman error filtering system in the upper part ©. It contains

The IMU sensors, the GPS device, a block for the strapdown

computation and the Kalman error filter. In this paper, we

assume that the GPS sampling rate is 1 Hz while the sampling

rate of the IMU is 50Hz.

The strapdown block calculates the position of the IMU,

its velocity, and the attitude, where the Bortz’ differential

equation

ζ̇ = ωb
nb +

1

2
ζ × ωb

nb

+
1

ζ2

(

1 − ζ sin(ζ)

2(1 − cos(ζ))

)

ζ × (ζ × ωb
nb), (9)
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Fig. 2. Barometric error filtering with map-matching.

is used. Here, ζ denotes the orientation vector and ωb
nb is the

angular rotation vector of the body system with respect to the

n-frame in coordinates of the navigation frame. Note, that the

relation

µ̇ =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ



ωb
nb (10)

holds. Further, eq. (11) describes the change of the velocity:

v̇n
eb = Cn

b ab
ib − (2ωn

ie + ωn
en) × vn

eb + gn, (11)

where ωn
ie is the earth rotation rate vector depending on the

current user position and ωn
en is the craft-rate in coordinates

of the n-frame, which further depends on the user velocity

vector vn
eb. We use Cn

b to denote the Direct Cosine Matrix,

which transforms data from the body-frame into the n-frame.

The gravity vector gn has a single non-zero entry, which

depends on the user latitude. For the update of the user position

in the strapdown calculation we use the following equation

with vn
eb,n, vn

eb,e and vn
eb,d being the north, east and down

components of the velocity vector, respectively:

ϕ̇ =
vn

eb,n

Rn(ϕ) + h
, λ̇ =

vn
eb,e

(Re(ϕ) + h) cos(ϕ)
, ḣ = −vn

eb,d.

(12)

Here, ϕ, λ and h denote latitude, longitude and height in

direction away from the earth, respectively. The variables

Rn(ϕ) and Re(ϕ) are certain parameters of the WGS-84 earth

model [1].

The Kalman filter state vector

∆xINS = [(∆pn)T , (∆vn)T ,∆ΨT ,∆bT
a ,∆bT

ω ]T (13)

consists of the error of the position vector ∆pn in the n-

frame, the error of the velocity vector ∆vn, the error of the

attitude vector ∆Ψ and the vectors ∆ba and ∆bω , which

denote the biases of the accelerometer and the gyroscope,

respectively. With the relation Ċn
b = Cn

b Ωb
nb, where Ωb

nb

is the skew symmetric matrix of ωb
nb and the differential

equations (9) - (12) a system of differential equations can be



formed by Taylor series expansion. Then the state equations

of the error state space Kalman filter are obtained by the

subsequent discretization. The measurements for the loosely

coupled filter are the (Kalman filtered) GPS outputs position

and velocity, and the filtered barometer output.

The solution of the Taylor series expansion of the differ-

ential equations (9) - (12) around ∆xINS shows that there is

an insufficient support of the yaw angle by the accelerometer

measurements. Hence there is a need to use also measurements

m̃b of the terrestrial magnetic field, which depends on the

attitude error through the following measurement equation:

m̃b(k) = (Ĉn
b )T (k)

(

mn + [mn×]∆Ψ(k)
)

+ wm(k). (14)

The matrix Ĉn
b denotes the corrected estimation of the DCM

Cn
b and the constant vector mn is assumed to be the true mag-

netic field with mn = [19 168.7nT, 418.0nT, 45 077.9nT]T .

These are realistic values for the magnetic field in Paderborn,

Germany.

IV. BAROMETRIC HEIGHT ESTIMATION WITH

TOPOGRAPHIC MAP-MATCHING

The height measurement system combined with map-

matching is presented at the bottom of fig. 2 ©. A barometric

height information is available with a rate of 10Hz. When

the distance between the current estimated position computed

by the strapdown algorithm in combination with the GPS

receiver and the barometer is less than 5m away from an

entry of the topographic database (box denoted ”Position

Check”), the height read out of the topographic map is used in

combination with the barometer reading for the error filtering.

If not, only the barometer data are used. The heights in

topographic maps are information with respect to the so-called

ellipsoid, a specific earth model used for geodetic applications.

In contrast a barometric device measures the height w.r.t. the

so-called geoid. This difference has to be be accounted for

in the comparison. Typical topographic maps can be found at

[9]. Note, that there are often a couple of topographic lines

crossing streets, where we assume that some of these crossing

points are known and saved in the database.

We remember, that in a realistic scenario the variables p0(k)
and T0(k) in eq. (6) are not known but constant values would

be obtained. By substitution of p0(0) and T0(0) for p0(k) and

T0(k) in eq. (6) and a Taylor series expansion around the triple
(

h0, T0(0), p0(0)
)

, we obtain an approximate relation between

the barometer measurements and the current height:

zh(k) ≈
(

1 + c1(k)
)

· h(k) + c2(k) + wh(k), (15)

with wh(k) ∼ N (0, σ2
h). The scale factor c1(k) and the bias

c2(k) depend on the errors in temperature and pressure as

follows:

c1(k) =
∆T0(k)

T0(0)
, c2(k) =

R · T0(0)

g(ϕ(k))
· ∆p0(k)

p0(0)
, (16)

where ∆T0(k) and ∆p0(k) denote the difference between

the initial and current temperature and initial and current

pressure at the reference height h0, respectively: ∆T0(k) =
T0(k)− T0(0) and ∆p0(k) = p0(k) − p0(0). We assume that

the errors c1 and c2 can be modeled by random walk processes,

where the variations in time are slow due to the relatively slow

movement of the vehicle. With xBaro = [c1, c2]
T we use

xBaro(k + 1) = xBaro(k) + ηBaro(k) (17)

as state equation of the barometric error state Kalman filter,

where the vector ηBaro consists of normally distributed ran-

dom variables with zero mean and covariance matrix σ2
Baro.

The measurement equation used for the topographic database

entries is zt(k) = h(k) + wt(k) with wt(k) ∼ N (0, σ2
t ).

In consideration of eq. (5) the input to this barometric error

state Kalman filter is given by

z(k)=

(

zh(k) − zt(k)
T̃ (k)+a·zt(k)−T̂0(0)

T̂0(0)

)

= HBaro(k) · xBaro(k)+ wBaro(k),

(18)

where the measurement matrix is given by HBaro(k) =
[

zt(k) 1
1 0

]

and wBaro(k) ∼ N (0,RBaro). The measurement

covariance matrix is diagonal with RBaro = diag
(

σ2
h +

(1 + c1)
2 · σ2

t ,
(

σT +a·σt

T̂0(0)

)2
)

,where T̂0(0) denotes the initial

assumption for T0(0). Note, that in eq. (18) zt(k) on the right

side is assumed to be deterministic.

In the last step the barometric errors are used for the error

correction of the barometric height estimates. This is done by

rearranging eq. (15):

h̃(k) =
zh(k) − ĉ2(k)

1 + ĉ1(k)
, (19)

where ĉ1, ĉ2 denote the estimates of the barometric error filter.

They are set constant to the last estimates, if there is no

topographic database entry available for updating.

V. EXPERIMENTAL RESULTS

In this section we present experimental results concerning

the quality of the proposed algorihm. The horizontal root

mean square (RMS) error of the simulated GPS positions

after filtering is about 4m, while the vertical error is about

10m. In realistic scenarios the accuracy of the GPS estimates

mainly depends on the DOP (Dilution of precision) value,

which specifies the effect of GPS satellite constellation on

the positioning error. Further, the error of the horizontal

velocity components is 0.5 m
s and for the vertical component

1.5 m
s , respectively. The standard deviation of the accelerom-

eter biases is σba
= 3.3 m/s2

√
s

for every entry in the vector

ηa, while the standard deviation of the equivalent inherent

noise term is σa = 35 × 10−4 m/s2
√

s
according to the realistic

data given in [7] 1. The corresponding gyroscope values

are for the biases σbω
= 0.0167 deg/s

√
s

and for the inherent

noise σω = 10.61× 10−2 deg
√

s
. The standard deviation of

1Note, that it holds: 1
m/s2
√

s
= 101.97

mg
√

Hz
= 60

m/s
√

h



the inherent noise of the magnetometer is 12.94 nT
√

s
for each

component. The standard deviation σt is set to zero, while

σh ∝ σph
.

The initial temperature is assumed to be T0(0) = 288.15K
while the initial pressure is p0(0) = 1013.15hPa. The inherent

measurement noise of the temperature is assumed to have a

standard deviation of σT = 0.2K. The corresponding pressure

value is σph
= 10Pa. The standard deviations of pressure

and temperature at reference height h0 are σp0 = 0.4 Pa
√

s
and

σT0 = 0.004 K
√

s
.

First, we want to present results for artificially generated

data. The duration of the simulated drive is 3.500 s. We as-

sume, that a reference height of the topographic map database,

to be used for error estimation in the barometric height filter,

is available every 100 s, where the database contains 10.000

entries. This could be a realistic database size for a considered

map section of about 40 km × 40 km.

A. Localization performance

Fig. 3 displays the absolute height estimation error |h(k)−
ĥ(k)| over time for the individual approaches for a trajectory

of duration 200 s. The height estimates provided by GPS
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Fig. 3. Absolute error of height estimates.

(denoted by GPS) exhibit the largest errors compared to the

other approaches. The INS based estimate which is only aided

by GPS data (GPS-INS) is also illustrated for reference.

The absolute error of the unfiltered barometric measure-

ments (denoted by BARO) achieves an average error of about

5m. Higher precision is obtained by the corrected barometric

estimates h̃ (BARO-TM) aided by topographic map-matching

is of higher accuracy. Due to the barometric error filter the

barometric height become more reliable even if there is no

reference height from a topographic map is available. Further,

we see that the combined approach (BARO-TM-GPS-INS)

outperforms the other algorithms: The estimation error is less

than 1m in almost all cases.

In fig. 4 and fig. 5 the cumulative density functions of the

position error and the velocity error of the different approaches

are illustrated. Here, BARO-TM-GPS-INS denotes again the

combined estimator with topographic map-matching, GPS the

solely filtered GPS measurements and GPS-INS is the filter

stage, using GPS based height estimates instead of barometer

based height estimates for the correction of the attitude of the

IMU. It can be seen that using a barometer in combination
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with map matching improves the performance of a GPS aided

IMU. Note, that the gain in position accuracy is not only due to

the improved vertical component. The usage of a barometer

also improves the horizontal position estimates of the GPS-

INS filter. This can be explained by the fact that there is a

dependence of the horizontal components of the attitude error

∆Ψ in the vector ∆xINS on the height measurement h̃, if the

position of the GPS antenna in the body system of the IMU

is known.

B. Barometric Error Filter

In this section we describe some results concerning the

performance of the barometric error Kalman filter. This filter is

meant to estimate the parameters c1 and c2 of the approximate

barometer equation (15). The figs. 6 and 7 show trajectories of



the true values of the parameters c1 and c2 and their estimates.

At the beginning of the simulation the estimates, notably
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Fig. 7. Barometric bias error c2 (est.: estimated values).

of c2, are inaccurate due to inappropriate initialization and

the unavailability of reference height values. From t = 400 s
on the estimates are close to the true values. Note, that the

parameter estimates are only updated when a topographic map

value is available. As this occurs only every t = 100 s the

computational effort is small. Remember that the factor c1
can be seen as a scale error mainly caused by errors in the

temperature measurement and c2 is the bias due to errors in

pressure measurements.

C. Complexity

Although the proposed algorithm seems to be computation-

ally demanding, the effort compared to other methods can

be justified by its superior performance. The main difference

between our solution and a typical loosely coupled filter is

the second Kalman filter for estimating the parameters of

the barometer. However, the dimension of the state vector is

only (2 × 1). Thus, the computational effort is insignificant

compared to the effort spent on the loosely coupled filter,

whose state vector is of dimension (15 × 1).

In tab. I we present the mean elapsed times of the different

blocks of our approach for different artifical trajectories and

a computed data set of duration of 1 s, because this is the

usual sampling time of a GPS receiver. The simulations had

been carried out using Matlab R2008b on a 2.33GHz Quad-

Core Xeon Processor with 4GB RAM. The figures in the

Strapdown Barometric Database search Loosely coupled
filter filter

18.2× 10
−3

s 0.91× 10
−3

s 8.7× 10
−3

s 28.8 × 10
−3

s

TABLE I
RUNTIMES OF STAGES.

table confirm that the effort spent on the barometric filter is

negligible.

D. Field measurements

We want to complete the section with some experimental

results using field data gathered during a test drive of about

50m which included sections in an urban environment and

sections in a rural environment. The velocity varied between

0 km
h (e.g. due to stops at traffic lights) and 120 km

h (e.g. on a

highway). Fig. 8 shows a map of a part of the route. It also

depicts the location of the waypoints. For every waypoint we

assume that a topographic height is available.

Fig. 8. Route section with markers, where a topographic height is known.

In fig. 9 some results concerning the height accuracy are

presented. It seems that the unfiltered barometric measure-

ments (BARO) are affected by a constant bias. The barometric

Kalman filter seems to track the bias c2 well, as the corrected

values (BARO-TM) no longer exhibit a bias. The differences

between the height estimates of the combined filter (BARO-

TM-GPS-INS) and the GPS based height estimates seem to be

up to 25m, while the corrected barometric estimates BARO-

TM are close to the combined estimator using reference points.

Further in our examinations seem to be only little variations

between the estimated heights at the output of the strapdown

block and the reference heights, considering sections, where no
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Fig. 9. Measured and estimated heights along a part of the route during field
trial.

reference height could be used for the update of the barometric

Kalman filter.

Fig. 10 shows the true theoretical scale factor c1 compared

to the filtered estimates. Due to the lack of a sufficient

amount of reliable reference measurements of the pressure,

we considered here only the temperature in detail. It is shown
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Fig. 10. Theoretical and estimated scale factor c1.

that the estimated values of the scale factor c1 stay close to

the true ones, which were given by the mean of the measured

temperatures of different temperature devices and the assump-

tions that T0(0) = 281.06K and p0(0) = 1018.23hPa, which

were measured by a barometrical reference station.

The last figure 11 illustrates the reliability of the proposed

algorithm when GPS dropouts occur. When we consider the

section, where a dropout is present for a duration of about 25 s
(green dotted line marks the GPS availability), we recognize

that the estimated trajectory (red line) is close to the real one

(blue line). Note, that the direction of motion changes very

fast at a certain point in the middle of the figure, which is

however detected by the system very well. Certainly, similar

results are also feasible, when the IMU is aided by a GPS

Fig. 11. Simulated GPS dropout for real trajectory.

device solely. But, as mentioned before, the result does not

only rely on the IMU alone. The improvement arises from the

combination of both, the IMU and the barometer since there

exist correlations between the height estimates and the attitude

errors in all axes of the IMU, which are filtered in the GPS-

INS filter. If employing only the height component of a GPS

device for aiding the IMU, the attitude would be corrected

much poorer due to the low quality of the height estimates of

the GPS Kalman filter.

VI. CONCLUSIONS

In this paper, a sensor fusion algorithm based on an IMU, a

GPS device and a barometer is proposed for a robust vehicle

localization. The error of the barometric device is kept small

by using reference heights from a topographical map and an

error state Kalman filter for compensating unwanted varia-

tions. The proposed algorithm outperforms a common method

of height estimation which is based on the vertical position

information of a GPS device together with an IMU device. It

is shown that the additional usage of a barometer instead of a

GPS device alone results in better attitude corrections due to

correlations between the barometric height and the error vector

of the attitude of the IMU depending on the current DCM

estimate and the GPS antenna position. In further work we will

explore the potential of our approach for indoor localization.
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