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Abstract

In this paper we present a system for identifying and localizing
speakers using distant microphone arrays and a steerable pan-
tilt-zoom camera. The scenario at hand assumes audio streams
to be processed in real-time to get the diarization information
“who spokes when and where” with only short delays. Our
new idea is to fuse the acoustical and visual observations di-
rectly within the Viterbi decoder to improve the diarization pro-
cess. In contrast to standard Viterbi decoder implementations,
we use a time variant transition matrix generated from speaker
change hypotheses and location information. This allows a si-
multaneous segmentation and classification of the audio stream.
Experiments show, that video information enables a substantial
improvement of the diarization results.
Index Terms: speaker diarization, face identification, acoustic
scene analysis

1. Introduction
Speaker diarization is the task of annotating an audio signal
with the information “Who speaks When?”. This we extended
with position information, which improves on the one hand the
speaker diarization process itself and on the other hand allows
speaker localization and tracking [1]. In ambient communica-
tion scenarios or telephone conferences an additional knowl-
edge source becomes available: the video stream of a camera.

The starting point of our studies is a communication system
consisting of multiple microphone arrays and a steerable pan-
tilt-zoom camera, whose focus is controlled according to the
video and audio information collected by the system. Therefore
the video stream is scanned on a frame-by-frame basis for faces
in different scale levels, whereas the computational demands
are reduced by a skin color segmentation. Detected faces are
focused automatically and zoomed in to improve the results of
the face identification, which is processed by the Fisher-Faces
method from [2].

We consider a scenario, where a single person or multiple
persons use the system for an audio-visual communication with
a distant person. The camera is automatically focused on theac-
tual active speaker or, in case of no active speaker, on a detected
face. The speaker diarization process estimates the position and
the identity of the speakers and passes the information to the
ambient system, which may react on this context information,
implying that all gathered information have to be availablein
approximately real-time.

Thus the main difference between speaker diarization in
acoustic scene analysis for ambient intelligence and speaker di-
arization in broadcast news or recorded meetings is the tem-
poral limitation. On the one hand we have the disadvantage to
neglected mulit-stage batch procedures and iterative approaches

to meet the requirements, but on the other hand we can assume
that the system has prior knowledge on the users.

In our scenario the acoustic scene analysis is based on mul-
tiple spatially distributed and wall-mounted microphone arrays.
The audio signals in this setup suffer from noise and reverber-
ation, but nethertheless enable the localization of speakers. If
the assumption holds that users are spatially separated, the ob-
tained position information can be used to greatly improve the
diarization performance as shown in [3].

We model the diarization process as a Hidden Markov
Model (HMM), where each state represents a speaker. The ob-
servation probability of a state is given by the combinationof
the Gaussian mixture models (GMMs) for speaker identifica-
tion and the models for face identification. In contrast to the
integrated approach in [4], we use time-variant state transition
probabilities estimated from position information and Bayesian
Information Criterion (BIC) based speaker change hypotheses.
A Viterbi decoder with a latency limited partial traceback com-
bines the acoustical knowledge with the visual informationand
thus delivers a fused version of the multi-modal input.

In the next section we give a system overview, introducing
the available knowledge sources and their probabilistic mod-
elling. Section 3 describes the module for controlling the steer-
able camera and section 4 is about our face identification sys-
tem. Speaker diarization is introduced in section 5. Experimen-
tal results are presented in section 6 and we finish with some
conclusions.

2. System overview
The system, as depicted in Figure 1, consists of two parts work-
ing in parallel, which are connected and synchronized via a
shared memory (SHM) approach. The upper part processes the
video stream delivered by a webcam for detecting and identify-
ing faces, as well as controlling the camera focusing. The lower
part handles the audio signals for speaker localization anddi-
arization. Remark that the audio processing is done at a con-
stant sampling rate of16 kHz and the video processing runs at
a variable frame rate, depending on the video stream itself and
the camera. Information about identified faces is stored in the
shared memory and is overwritten each time a new picture has
been processed. In the meantime the audio processing relieson
the actually stored information in the SHM.

All knowledge sources in the system are probabilistically
modeled, namely position information from adaptive beam-
forming, speaker change information from the Bayesian Infor-
mation Criterion (BIC), voice activity detection (VAD), Gaus-
sian mixture models (GMM) for speaker identification, and the
face detection and identification information.

We apply a Filter-and-Sum Beamformer (FSB) [5] on each
microphone array for signal enhancement, which as a byprod-
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Figure 1:System overview and knowledge sources

uct can be used for estimating the Direction-of-Arrival infor-
mation for the dominant sound source. Our experimental setup
as shown in Figure 2 uses one T-shaped microphone array
(Array1), mounted between the display and the webcam, for
estimating the tilt angleβ towards the speaker. The postion
of the speaker is retrieved from the estimated anglesαi of the
three arrays by calculating the centroid of the intersection points
(s12, s13, s23) of the on the floor projected directions. The vari-
ance of the position estimatesxpos(k) in a time window of0.5 s

is used as a feature in the diarization process. The parameters
of the Gaussianp(xpos|c) are estimated from training data, us-
ing the binary variablec, which indicates the presence (c = 1)
or absence (c = 0) of a speaker change in the observed time
frame.
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Figure 2:Experimental setup and room

The feature vectorxsid for speaker identification and
speaker chance detection is computed by an ETSI advanced
feature extraction (AFE) front-end [6] applied to the enhanced
beamformer output signal. We use a42 dimmensional vector
consisting of13 MFCCs (c0 . . . c12) and a voicedness feature
[7] and their first and second order derivatives.

Upon the feature vectors in a sliding window of length0.6 s

a BIC value to hypothesize speaker changes is computed [8]. Its
variancexbic in a time frame of0.5 s is used in the probabilistic
modelp(xbic|c) for speaker change detection.

Also the feature vectors are utilized in the speaker scoring,
where for each useri a GMM p(xsid|Ω = i) := p(xsid|Ωi)
is evaluated. The GMMs are trained on user-specific audio
data by Bayesian adaptation from a universal background model

(UBM) for speakers.
The system needs two different types of voice activity de-

tections. One is required for controlling the adaptation ofthe
beamformers and the other is used in the speaker diarization
process. Adaptation of the FSB filters is only performed in the
case of active speakers and suffers from low energy signals or
false alarms. Thus we employed an energy based voice activ-
ity detection for this task. Contrary to beamforming speaker
diarization requires a VAD that bridges short speech pauses
and acts like a VAD for speech recognition. The voice ac-
tivity detection from the ETSI AFE could either be an appro-
priate choice for the task, or a modified version of the energy
based VAD. In both cases the VAD information is represented
by P (V |xvad) being in the range between0 (absence of speech)
and1 (presence of speech), whereas the featurexvad depends on
the type of VAD.

3. Camera control
The webcam is controlled by the modulePTZ Control consider-
ing location information from the audio part as well as informa-
tion from the video stream. Each frame of the video stream is
scanned for faces and the found face positions are passed to the
control module. The audio localization information in Carte-
sian coordinates and the tilt angleβ are transformed into pan,
tilt and zoom information and passed via the shared memory to
the camera control module. Inconsistencies between audio and
video localization are treated as follows: If only audio or only
video is available, the camera is adjusted according to the avail-
able information source. If both modalities deliver inconsistent
information, which means that a face is found in the actual pic-
ture, but the active speaker is localized outside the cameraview,
the camera holds the view angle for a few seconds and then
focuses more the active speaker by favouring the audio infor-
mation.

4. Face detection and identification
In this scenario users communicate via voice and video with
each other. Thus the assumption is justified that they act coop-
erative to a certain extend. The deployed face detector is limited
to upright faces looking towards the camera, which is fulfilled in
most cases, as the camera is mounted above the display showing
the far-end communication participant.

Each frame of the video stream is transformed from RGB to
HSV color space. On the V component (grey scale picture) the
scan for faces is performed, which is limited to the areas of the
frame, where skin color is detected. Skin color segmentation
uses a histogram look-up approach with smoothing techniques
for determining coherent skin color regions. The grey scalepic-
ture is scaled to subframes with different resolutions using the
WinScale algorithm [9], such that faces could be detected in
different sizes. Each subframe is processed with a local struc-
ture transformation (LST) as proposed in [10] and scanned for
faces with a detection cascade as suggested by Viola and Jones
in [11].

The approach described above tends to find multiple de-
tections of a face in shifted positions or different scalinglev-
els. Hence a clustering module based on a Leader-Follower
method is deployed to merge multiple detections of single faces
to unique size and position information of faces.

The face identification employs a principal component
analysis (PCA) followed by a linear discriminant analysis
(LDA) as proposed in [2]. At first an area around the middle
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Figure 3:Hidden Markov Model for speaker diarization

point of the detected face is cut out the grey scale picture and
scaled such that its size fits60×60 pixel resulting in a3600 di-
mensional vector. Then a PCA is used to reduce the dimension
of the feature vector from3600 to 200 and subsequently a LDA
reduces this to a feature vectorxvid(k) with dimension “number
of trained users minus one”.

For each user a single Gaussianp(xvid|Ωi) is learned from
training data and evaluated for the current observation. Con-
secutive observations in the same view angle of the camera are
linked using the a posteriori class probabilities of the last time
step as a priori class probabilities for the current timestep. Thus
we get the a posteriori probability of the lastν observations to
be:

p(Ωi|x
vid
ν (k)) = p(Ωi|x

vid(k), . . . , xvid(k − ν)) (1)

=
p(xvid(k)|Ωi) · p(Ωi|x

vid
ν−1(k − 1))

P

j

p(xvid(k)|Ωj) · p(Ωj |xvid
ν−1

(k − 1))
(2)

To accomodate errors and enforce stability, the posterior is
lower-bounded by a minimum threshold.

5. Speaker diarization
Our speaker diarization is based on an ergodic Hidden Markov
Model (HMM) and a Viterbi decoder. The HMM has one hid-
den state per user and an extra state for “silence”. The obser-
vation probability of each state is given by the combinationof
the acoustic knowledgep(xsid(k)|Ωi) and the visual knowledge
p(Ωi|x

vid
ν (k)). In Figure 3 an example for three users is de-

picted. Since the acoustic user models are trained on speech
data without silence parts and no voice activity detection with
frame dropping is done upfront, the GMM likelihood must be
multiplied with the probability that the frame contains voice.
For the observation probability we get

bj(x(k)) =



p(Ωj |x
sid(k), xvid

ν (k)) · P (V|xvad) Ωj : spk
p(Ωj |x

sid(k)) · (1 − P (V|xvad)) Ωj : sil
(3)

Assuming thatxsid(k) andxvid
ν (k) are statistically independent,

we find

p(Ωj |x
sid(k), xvid

ν (k)) =
p(Ωj , x

sid(k)|xvid
ν (k))

p(xsid(k)|xvid
ν (k))

(4)

=
p(xsid(k)|Ωj , x

vid
ν (k)) · p(Ωj |x

vid
ν (k))

p(xsid(k)|xvid
ν (k))

(5)

=
p(xsid(k)|Ωj) · p(Ωj |x

vid
ν (k))

p(xsid(k))
(6)

=
p(xsid(k)|Ωj)

P

i

p(xsid(k)|Ωi)p(Ωi)
· p(Ωj |x

vid
ν (k)) (7)

Furthermore in the case of silencep(Ωj = sil|xsid(k)) is set to
an average GMM-score value of the speaker models.

The new idea introduced in [1] is to form time variant
transition probabilities from the available speaker change in-
formation. In this setup we derive speaker change information
from BIC and position information and we further assume that
xpos(k) andxbic(k) are statistically independent. Employing the
binary random variablec(k), which is1 if a speaker change oc-
curs between the time instancesk−1 andk and0 else, it follows
that

p(c(k)|xpos(k), xbic(k)) =
p(xpos(k), xbic(k)|c(k))P (c(k))

p(xpos(k), xbic(k))

=
p(xpos(k)|c(k))P (c(k))

p(xpos(k))

p(xbic(k)|c(k))P (c(k))

p(xbic(k))

1

P (c(k))
.

(8)

Under the assumption thatP (c(k)) is constant for allc(k), the
transition score can be simplified to

aij(k) =
p(xpos(k)|c(k))
P

c′
p(xpos(k)|c′)

·
p(xbic(k)|c(k))
P

c′
p(xbic(k)|c′)

. (9)

Transitions to or within the silence state requires specialtreat-
ment, as for the case of silence no position change informa-
tion is available. Thus we defineaij(k) = p(c(k)|xbic(k)) for
j = sil and arbitrary values ofi.

A Viterbi decoder is deployed on the trellis diagram of the
unfolded state transition diagram of Figure 3 to find the sin-
gle best state sequence, given the acoustical and visual observa-
tions:

ŝ
K
1 = argmax

sK

1

K
X

k=1

(log bj(x(k)) + κ log aij(k)) . (10)

The viterbi decoder is implemented with a partial trace-
back, starting from the state with the currently best score.It
determines the unique part of the state history and deliversit as
output. In the rare case of a missing unique trace and simulta-
neously exceeding the limit of maximum delay, a traceback is
forced and the trace with the highest score is chosen.

6. Experiments
Experiments were conducted in a room of size3.5m × 7.3m

with a room reverberation time of150 ms. The database for
training the system contains the audio and video data of10
users. First we considered a scenario where a single user is
interacting with the system at a relatively fixed position asit
is usually the case during a phone call. The second scenario
is more like a telephone conference, where two people are on
one side of the system alternately talking. In the latter case the
camera’s focus has to switch between the users to focus on the
active speaker.

In Figure 4 an example for a speaker change is depicted,
showing the results of the acoustic based location informa-
tion in Cartesian coordinates and the a posteriori probabilities
p(Ωj |x

vid
ν (k)) of the face detection. At time instance7s a

speaker change happens causing the camera panning towards
the second speaker. The speaker location is found after justa
short delay, but the camera panning and focusing takes a while
until the new speaker is found and identified.

In Table 1 some results of the experiments are listed to
show the advantages and disadvantages of our approach. The
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Figure 4:Camera information and position estimation

Faces DER % time
User obs. corr. Audio Fusion [min:sec]

A 94.21 89.36 94.86 99.38 3:30
B 90.31 74.57 92.58 98.93 3:26
C 79.46 83.99 98.17 99.87 3:15
D 89.95 100.00 81.61 99.71 3:04
E 89.14 19.50 99.07 90.64 2:55
F 77.71 92.15 99.30 99.52 3:12
G 58.61 91.02 68.33 82.94 2:16

D & A 68.02 85.47 73.32 89.59 3:09
A & B 74.56 89.74 71.97 93.97 5:19
C & A 72.02 82.71 69.77 89.80 3:21
F & A 49.21 89.84 66.85 89.27 3:38

Average 76.75 81.47 82.64 94.23 32:59

Table 1:Experimental results

face identification relies on the results of the face detection,
which means that only detected faces in a upright position can
be found and identified. Unfortunately users tend to move their
face during conversations such that the face detector randomly
delivers no detections or the camera has to follow the move-
ment. During the focussing process no detections are available,
which, especially in the multi user case, causes a low observa-
tion rate (Faces obs. in Table 1). The third column shows the
rate of correct identifications of the found faces with an average
value of81.47%.

The performance of the diarization process is measured
with the diarization error rate (DER), which is the percentage
of correct labeled data. A comparison between the standard
approach using only acoustical information (DER, Audio) and
the new approach using the fusion of acoustical and visual in-
formation (DER, Fusion) is given in the table. On average the
diarization performance is improved by11.59% absolute, if the
video data is incorporated.

The main disadvantage of our approach can be observed
for the user “E”. In case of false face identifications, here only
19.50% of the detected faces are correctly identified, the di-
arization error rate is increased by the false informations.

Another observation from the experiments is, that moving
speakers or multiple switching speakers are worse diarizedthen
single, fixed speakers. Users “A” to “F” are fixed speakers, user

“G” is a moving speaker and the last four rows are experiments
with switching speakers. If a user moves, the observation rate
of his face decreases, as the camera needs time to focus on the
new position. This has no effect on the identification rate of
the faces, since the system only identifies detected faces. Al-
tough in this case the system rarely detects and identifys a face,
particularly the diarization benefits most from the additional in-
formation gathered from the frames.

7. Conclusions
In this paper we have presented our system for online speaker
diarization based on distant microphone array audio data and
video data obtained from a steerable pan-tilt-zoom camera.An
HMM approach with probabilistic modelling of the knowledge
sources in combination with a Viterbi decoder and a partial
traceback implementation enables online processing of audio
streams. Thus a parallel segmentation and classification with
low latency is feasible. Experiments showed substantial im-
provements for the speaker diarization task for single as well
as for multiple users if face identification information is con-
sidered during the diarization. Further improvements may be
realized by employing more advanced face identification and
tracking techniques.
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