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Abstract—A combination of GPS (Global Positioning System)
and INS (Inertial Navigation System) is known to provide high
precision and highly robust vehicle localization. Notably during
times when the GPS signal has a poor quality, e.g. due to
the lack of a sufficiently large number of visible satellites, the
INS, which may consist of a gyroscope and an odometer, will
lead to improved positioning accuracy. In this paper we show
how velocity information obtained from GSM (Global System
for Mobile Communications) signalling, rather than from a
tachometer, can be used together with a gyroscope sensor to
support localization in the presence of temporarily unavailable
GPS data. We propose a sensor fusion system architecture and
present simulation results that show the effectiveness of this
approach.

I. INTRODUCTION

Vehicle positioning based solely on GPS signals suffers

from a lack of robustness as it heavily relies on the visibility

of a sufficiently large number of satellites. As the visibility,

however, may be impaired, for example in narrow street

canyons or in tunnels, GPS has to be backed up by additional

positioning sensors if critical applications are to be realized.

For example, in the German electronic toll collect system

the vehicle’s position is tracked by a combination of GPS, gy-

roscope, and odometer data, the latter being acquired through

a connection to the vehicle’s CAN (Controller Area Network)

bus. In the so-called onboard unit (OBU) the sensor data

are fused and information relevant for toll computation is

transmitted to a central station via a GSM link.

In this paper we consider the use of velocity information

estimated from the GSM signal characteristics as a replace-

ment of the odometer readings. As a GSM terminal is present

in an OBU anyway, this would come at no extra hardware

costs while at the same time rendering the costly installation

of a CAN bus interface for access to the odometer data

unnecessary.

As explained in a former WPNC paper [1], velocity esti-

mates via GSM can be obtained from the fast fading statistics

of received downlink signals without establishing an active

connection. With the approach taken there, it turned out that

the mean and variance of the measurement error depend on

the true velocity.

Note that the use of GSM signal strength measurements to

determine the vehicle’s position [2] results in rather inaccurate

estimates and will therefore not further considered here.

In this paper we show how a GSM based velocity estimator

can be utilized in a positioning system and determine the

achievable positioning accuracy by means of simulations. The

paper is organized as follows: In the next section we explain

the generation of artificial GPS, gyroscope, and GSM data

in our simulation system. We then describe how the various

sensor data, including GSM based velocity estimates, are

processed and fused. In section IV we present experimental

results before giving concluding remarks in section V.

II. MEASUREMENT DATA GENERATION

Figure II gives an overview of the generation of the artificial

measurement data, thus simulating a GPS, gyroscope, and

GSM device. First, a random vehicle trajectory is generated

which serves as the ground truth for the vehicle’s position

and velocity. From this, artificial GPS and gyroscope measure-

ments are generated according to a measurement model which

captures the imperfections of the corresponding devices. The

ground truth forward velocity s is input to the GSM channel

simulator as it affects the Doppler spectrum of the fading

processes. The received GSM downlink signal is generated

from which velocity estimates are to be obtained. In the

following we are giving a detailed description of the simulation

system.
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Fig. 1. Generation of measurement data

A. Generation of Ground Truth Values

First, artificial reference trajectories are generated, whose

characteristics match the second order statistics of data gath-

ered by real test drives. For every sampling time k, where

k counts multiples of the sampling interval TGyro of the



gyroscope, the ground truth values of the vehicle’s state

xTrue (k) =









x (k·TGyro)
y (k·TGyro)
vx (k·TGyro)
vy (k·TGyro)









(1)

are generated according to a state model described further

below. The state vector xTrue (k) contains the vehicle’s current
position (x (k·TGyro) , y (k·TGyro)) and velocity components

(vx (k·TGyro) , vy (k·TGyro)), both in 2D-Cartesian coordinates.

The sampling period TGyro = 24

1625
[s] was chosen in relation to

the sampling time TGSM of the GSM based velocity estimator,

as will be explained later on.

Assuming a dynamical model of type ”constant accelera-

tion” [3], the state equation is given by

xTrue (k + 1) = ATruexTrue (k) + BTruewTrue (k) . (2)

with the state transition matrix

ATrue =









1 0 TGyro 0
0 1 0 TGyro

0 0 1 0
0 0 0 1









. (3)

The matrix

BTrue =











T 2

Gyro

2
0

0
T 2

Gyro

2

TGyro 0
0 TGyro











(4)

maps the white system noise wTrue (k) to the state vector

according to Newton’s motion laws.

The system noise wTrue (k) ∼ N (0, 46.3 · I2) is Gaussian

with mean 0 and covariance 46.3 · I2, where In denotes a

diagonal matrix of size n×n. These values were obtained from

an analysis of real field data of a test drive where the position

was measured in [m] and the velocity was measured in [m
s
].

As a low cost GPS device delivers measurements at a much

lower rate than the gyroscope rate 1

TGyro
(in this paper we

assume a typical GPS sampling interval of TGPS = 1 [s]), we

make a distinction in our notation between the vehicle state

trajectory at rate 1

TGyro
and 1

TGPS
. To be specific,

x′

True (m) =









x (m·TGPS)
y (m·TGPS)
vx (m·TGPS)
vy (m·TGPS)









, (5)

is the state vector, where m denotes the sample index accord-

ing to a sample spacing of TGPS.

Next, the true turn rates ω (k) and forward velocities s (k)
are generated at the gyroscope’s sampling times k·TGyro [4].

For the computation of ω (k), the vehicle’s heading

α (k) = arctan

(

vy (k·TGyro)

vx (k·TGyro)

)

(6)

is calculated in a first step. Next, the turn rate is calculated

by the heading changes between two successive gyroscope

sampling times:

ω (k) =
α (k + 1) − α (k)

TGyro

. (7)

To obtain the forward velocity, the length of a circle segment

is calculated, which is defined by the angles α (k), α (k + 1)
and the Cartesian coordinates (x (k·TGyro) , y (k·TGyro)) and

(x ((k + 1) ·TGyro) , y ((k + 1) ·TGyro)). Dividing this length by
TGyro gives the forward velocity s (k).
Finally, reference values s′′ (l) for the GSM based velocity

estimation are generated every TGSM = 5·TGyro seconds as

the average of the forward velocity values within this interval.

Here, l is the discrete time index counting multiples of the

sampling interval TGSM of the GSM based velocity estimator.

Note that in our notation, the primes are meant to distinguish

different sampling intervals of the same underlying stochastic

process, e.g. s (k) denotes the process s sampled at times

k·TGyro, s′ (m) corresponds to s sampled with a spacing TGPS,

and s′′ (l) is s sampled with a sampling interval of TGSM.

In the following subsection we describe how the the ground

truth values are distorted to account for the imperfections of

the different sensors.

B. Generation of GPS Position Measurements

Instantaneous GPS measurements

zGPS (m) =

(

x̃ (m·TGPS)
ỹ (m·TGPS)

)

(8)

of the location are generated using the following measurement

equation:

zGPS (m) =

(

1 0 0 0
0 1 0 0

)

· x′

True (m) + vGPS (m) . (9)

Here, vGPS (m) ∼ N (0, 1800 · I2) is white Gaussian measure-

ment noise. Further details concerning the covariance matrix

will be given later on.

We assume that the GPS receiver does not directly measure

the velocity, which is a quite reasonable assumption for low

cost GPS receivers.

C. Generation of Gyroscope Data

For the turn rate measurements ω̃ (k) of the gyroscope, a

gyroscope measurement model including drift [5] was im-

plemented. The time-dependent drift ǫ (k) of the gyroscope,

which results in a deviation of the measured turn rate from

the true value is modelled as an exponential function

ǫ (k) = C1

(

1 − e
−

k·TGyro

TDrift

)

+ C2, (10)

with parameters C1, C2, and TDrift.

The measurement model was furthermore extended to in-

clude noise, quantization errors of the measured turn rates

and nonlinearity. Due to the lack of an appropriate model,
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Fig. 2. Principle of fast fading estimation

the nonlinearity was modelled as an sine function of the true

turn rate. Thus the overall measurement equation is given by:

ω̃ (k) = f (ω (k)) + ǫ (k) + vGyro (k) . (11)

Here, f (·) stands for the effects caused by quantization and

nonlinearity. vGyro (k) ∼ N
(

0, σ2

Gyro

)

is the scalar measure-

ment noise. All parameters are chosen such that a precision

which is typical of existing low cost gyroscopes is reached [6],

[7], [8]: The resolution of the gyroscope measurements was 0.1

degree per second, the nonlinearity was set to be four percent,

and the variance of the measurement noise was σ2

Gyro = 24

100000
.

D. Estimation of Forward Velocity from GSM Data

The true forward velocity is used in the generation of

GSM downlink signals received by the mobile GSM unit,

as it influences the fading statistics of GSM. The simulated

downlink contains all relevant aspects of GSM signalling such

as burst structures, differential encoding, Gaussian minimum

shift keying (GMSK) pulse shaping, and a realistic chan-

nel. The implemented channel model accounts for additive

white Gaussian noise, cochannel interference, and furthermore

multipath propagation according to the bad urban profile of

COST 207 [9].

For each path i of the multipath profile with corresponding

delay τi an independent fast fading process h (t, τi) is defined,
with t denoting the time-variance of the channel, see figure 2.

Assuming a uniform distribution of the angle of arrival of the

signal components (isotropic scattering), the power spectral

density of this process exhibits the typical u-shaped form (so-

called Jakes’ spectrum), see figure 3:

Si (f) =







σ2

i

π
· fDmax√

f2

Dmax
−f2

for |f | < fDmax
,

0 else.
(12)

σ2

i is the average signal power of the i-th path and f denotes

the frequency. The maximum Doppler frequency shift fDmax

depends on the forward velocity s, the carrier frequency fC ,

and the radio wave propagation speed, which is usually the

speed of light c:

fDmax
= s · fC

c
. (13)
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)

−fDmax 0 fDmax

0

Fig. 3. Power spectral density of a fast fading process for isotropic scattering:
Jakes’ spectrum

The forward velocity is estimated in the GSM receiver in

a 2-step process. First the channel impulse response h (t, τ)
is estimated from training data which are periodically sent on

the base station’s pilot channel [10], [11]. Then the Doppler

spectrum Ŝ1(f) is estimated from the Fourier transform of the

first multipath component’s estimation ĥ (t, τ1) w.r.t. the time

variable t.

By assuming a power spectral density of the shape of

equation (12) for the estimated fast fading process ĥ (t, τ1),
the forward velocity can finally be estimated by an approach

called velocity estimation using the power spectral density

(VEPSD) [12]. The main idea is that the highest slope in the

power spectral density corresponds to the maximum Doppler

frequency shift and thus to the current forward velocity. An

estimate of the forward velocity is obtained by:

s̃ =
c

fC

max

{

argmax
f

{∣

∣

∣

∣

d

df
Ŝ1 (f)

∣

∣

∣

∣

}

}

. (14)

Here, the argmax operator has to be understood to return

the location of one or more local maxima. The maximum

operation then picks the largest frequency at which a local

maximum occurs.

This estimation process does not require an active connec-

tion. The resulting estimates, however, suffer from delays and

averaging caused by the temporal window required to compute

the power spectral density. Furthermore it turned out that

mean and variance of the estimation error depend on the true

velocity. This can be modelled by the following measurement

equation:

s̃′′ (l) = s′′ (l) + vGSM (l, s′′ (l)) , (15)

with

vGSM (l, s′′ (l)) ∼ N
(

µ (s′′ (l)) , σ2 (s′′ (l))
)

(16)

being an approximation of the measurement noise modelling

a Gaussian distributed measurement error.



Note that the period TGSM = 120

1625
[s], at which the GSM

based velocity estimates occur, is defined on the basis of the

timing used for GSM signalling and on basis of the temporal

window length required to compute the power spectral density.

The gyroscope’s sampling time is set to TGyro = TGSM

5
in order

to keep the dead reckoning, which is performed later, as simple

as possible. The resulting gyroscope’s sampling frequency of
1

TGyro
= 67.71 Hertz lies within the range of typical low cost

gyroscopes.

III. SENSOR FUSION ARCHITECTURE

Figure 4 depicts the architecture of our proposed positioning

system. At first, all measurement data are passed through

individual (extended) Kalman filters in order to get higher

precision data for the sensor fusion. In a second step, dead

reckoning is performed employing the gyroscope data and the

GSM based speed estimates. Filtered GPS data are utilized to

correct the computed position estimates.

-
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Fig. 4. Architecture of the Positioning System

A. Processing of instantaneous GPS position estimates

The instantaneous GPS measurements zGPS are first input

to a Kalman filter (KF) which yields at its output estimates

x̂GPS (m) =









x̂ (m·TGPS)
ŷ (m·TGPS)
v̂x (m·TGPS)
v̂y (m·TGPS)









(17)

of location and velocity every TGPS seconds. This filter is based

on a state equation analogous to (2), however with sampling

time TGPS, and the measurement equation (9).

The covariance matrices for both system and measurement

noise are assumed unknown and are estimated by separate

training data. In practice, these training data can be acquired

by using a reference high precision positioning system. The

filter is initialized by two point differencing [3]: The first

two instantaneous measurements are employed to initialize the

estimated state vector and the corresponding covariance matrix

of the filter’s estimation error. Thus, no a priori knowledge

about the system state is required.

Note that the covariance matrix of the measurement noise,

see equation (9), has been chosen such that the Kalman filtered

estimates exhibit accuracies with a root mean square (RMS)

error of about 25 [m], which is typical of current low cost

receivers [13].

B. Processing of Gyroscope Data

For the gyroscope data, a Kalman filter is applied in

order to reduce the measurement error and to eliminate the

deterministic drift in one step. To this end, the state vector of

the Kalman filter is augmented by the derivatives ω̇, ω̈ of the

turn rate and by the drift ǫ and its derivative ǫ̇:

xGyro (k) =













ω (k)
ω̇ (k)
ω̈ (k)
ǫ (k)
ǫ̇ (k)













. (18)

From equation (10) we find ǫ̇ (k) = C1

TDrift
·e−

k·TGyro

TDrift , which can

be utilized for the following recursive description of the drift:

ǫ̇ (k + 1) = e
−

TGyro
TDrift · ǫ̇ (k) , (19)

ǫ (k + 1) = ǫ (k) + TDrift

(

1 − e
−

TGyro
TDrift

)

ǫ̇ (k) . (20)

These equations can be gathered in the state equation

xGyro (k + 1) = AGyroxGyro (k) + BGyro·wGyro (k) , (21)

with the state transition matrix

AGyro =



















1 TGyro
T 2

Gyro

2
0 0

0 1 TGyro 0 0
0 0 1 0 0

0 0 0 1 TDrift ·
(

1 − e
−

TGyro
TDrift

)

0 0 0 0 e
−

TGyro

TDrift



















.

(22)

By comparison with equations (10) and (19) we find the

initialization: ǫ (0) = C2, ǫ̇ (0) = C1

TDrift
.

The matrix BGyro which relates the scalar white, Gaussian

system noise wGyro (k) to the system state is given by

BGyro =













T 2

Gyro

2

TGyro

1
0
0













. (23)

The equation (11) is simplified to the measurement equation

ω̃ (k) =
(

1 0 0 1 0
)

· xGyro (k) + ṽGyro (k) , (24)

with a white Gaussian measurement noise ṽGyro (k).
Note that ṽGyro (k) has an increased variance compared to

vGyro (k) as it also captures the effects of the quantization

errors.

Again, the statistical properties of both system and mea-

surement noise are estimated by separate training data. Also,

the gyroscope parameters C1, C2, and T are estimated from



training data using the Levenberg-Marquardt method of itera-

tive least squares. The filter is again initialized by two point

differencing.

By applying this kind of filtering, the estimate x̂Gyro (k) is

computed, of which ω̂ (k) =
(

1 0 0 0 0
)

· x̂Gyro (k) is

utilized in the dead reckoning step performed later on.

C. Processing of GSM based Velocity Estimates

Another state estimator is applied to the forward velocity

’measurements’ s̃′′ (l) computed from the analysis of the GSM

fading statistics. The following state equation is used:

xGSM (l + 1) = xGSM (l) + BGSM·wGSM (l) , (25)

with state variable

xGSM (l) = s′′ (l) . (26)

BGSM is given by BGSM = TGSM, if a random white accelera-

tion is assumed.

The measurement equation (15) is nonlinear due to the

dependence of the statistics of the measurement noise

vGSM (l, s′′ (l)) on the velocity s′′ (l). Therefore, extended

Kalman filtering (EKF) has to be used. This nonlinear de-

pendency is modelled by a polynomial function of order 4,

thus

vGSM (l, s′′ (l)) ∼ N
(

4
∑

i=0

ai· (s′′ (l))i
,

4
∑

i=0

bi· (s′′ (l))i

)

,

(27)

with coefficients also being trained on separate training data

by regression. The variance of the system noise wGSM is again

estimated on separate training data, and the filter is initialized

by two point differencing.

D. Dead Reckoning and Sensor Fusion

Using the more reliable filtered estimates ω̂ (k) and ŝ′′ (l),
corresponding values

x̂DR (k) =









x̂DR (k·TGyro)
ŷDR (k·TGyro)

v̂x,DR (k·TGyro)
v̂y,DR (k·TGyro)









(28)

for position and speed are calculated every TGyro seconds in a

recursive manner by computing offset vectors (core principle

of dead reckoning). However, the error

δTrue (k) = x̂DR (k) − xTrue (k) (29)

concerning the position calculated by this approach increases

over time due to the recursive computation.

To combat this effect, an error model according to the

architecture presented in [14] is defined, by which an error

estimate δ̂ (m) is used for correction of the estimated position

and velocity. Here, δ̂ (m) is estimated from the difference

δ̃ (m) of the position estimates obtained by GPS and dead

reckoning:

δ̃ (m) = x̂′

DR (m) − x̂GPS (m) . (30)

Note that the index m indicates that this error estimate can

only be calculated at the sampling times m·TGPS of the GPS

receiver.

The error estimate δ̃ (m) is input to a Kalman filter. Again,

a system model analogous to equation (2) is employed:

δ′

True (m + 1) = AErrorδ
′

True (m) + BErrorwError (m) , (31)

however now with the error δ′

True (m) sampled at times m·TGPS

being the state variable. AError and BError correspond to the

variables utilized in the Kalman filter for the instantaneous

GPS estimates. Again, wError (m) is white Gaussian system

noise corresponding to a random acceleration.

With equations (29) and (30) the measurement equation can

be written as follows:

δ̃ (m) = δ′

True (m) + (x′

True (m) − x̂GPS (m)) , (32)

= δ′

True (m) + vError (m) , (33)

with vError (m) ∼ N
(

µError, σ
2

Error

)

being Gaussian measure-

ment noise defined by the the statistical properties of the

estimation error of the GPS Kalman filter.

Whenever there is a GPS measurement available, a new

estimate of the error is calculated by which the position and

heading of the dead reckoning is corrected.

Due to the recursive structure of this sensor fusion prob-

lem (the Kalman filtered error estimate δ̂ (m) affects and

is affected by x̂′

DR (m)), the statistics of the system and

measurement noise have to be estimated in an iterative manner.

At first, the GPS estimates are replaced by the ground truth

values and no error filtering is performed in order to compute

a first estimation of the system noise of the error filter. In

the following iterations, Kalman filtering using the estimated

system noise is performed and the system and measurement

noise are reestimated.

IV. EXPERIMENTAL RESULTS

We conducted experiments on a synthetical trajectory of a

length of 31 [km]. The virtual drive on that trajectory took

approximately 22 minutes.

A. Pure Dead Reckoning

At first, the performance of pure dead reckoning is evalu-

ated. Figure 5 depicts the mentioned trajectory (bold line) and

two estimates calculated by different approaches. The grey dot-

ted line results from dead reckoning with unfiltered gyroscope

measurements and GSM based velocity estimates, whereas

the black dotted curve was estimated by using corresponding

filtered data. Both approaches did not employ GPS data for

correction. It can be seen, that using unfiltered data delivers

completely unreliable estimates. Utilizing filtered measure-

ment data, dead reckoning is able to track the trajectory at

the beginning. But quickly the positioning error increases,

rendering this approach unsuitable, even though the shape

of the resulting trajectory has a certain similarity with the

reference trajectory. This growing error is the reason why dead

reckoning only makes sense in conjunction with correcting

data from another sensor device.



 

 

0

0-4 -2 2 4 6

-5

-10

-15

x ([km])

DR (Unfilt.)

DR (KF)

True

Fig. 5. Trajectories estimated by pure dead reckoning

B. Sensor Fusion in Comparison to pure GPS Positioning

Figure 6 contains plots of the cumulative density functions

(CDFs). For a given distance, the CDF gives the probability

that the obtained absolute positioning error is smaller than or

equal to that distance. A perfect localization method would

have a constant cumulative density function of 1 for every

distance since its error would always be 0 [m]. It can be

clearly seen that the instantaneous GPS estimates, plotted as a

grey dashed line, can be improved by Kalman filtering whose

results are given by the solid grey line. Better positioning

performance can be obtained by our hybrid positioning system

employing GSM based velocity estimates and gyroscope data

(solid black line): While for 67 percent of all cases the

positioning error is smaller than or equal to 26.19 [m] for pure

Kalman filtered GPS estimates, it is below or equal 22.61 [m]

for the proposed positioning system.
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Table I shows some additional performance indicators of the

obtained positioning errors: the RMS error, the mean absolute

error, the maximum absolute error, and the variance of the

absolute error. It can be seen clearly, that the sensor fusion

approach performs best w.r.t. every indicator.

Approach: RMS Error: Mean abs. Max. abs. Error
Error: Error: Variance:

GPS 26.20 [m] 22.63 [m] 76.46 [m] 174.29 [m2]

Sensor Fusion 21.76 [m] 19.11 [m] 57.18 [m] 108.32 [m2]

TABLE I
ERROR PROPERTIES OF LOCALIZATION

C. Sensor Fusion in Comparison to pure GPS Positioning for

degraded GPS Signal Quality

In a next step we conducted experiments concerning a

disturbed GPS reception. In order to model a distorted GPS

channel, the Gilbert-Elliot model is employed, which is a two

state model, the one state indicating availability of GPS and the

other absence of GPS. In the figure 7, ’R’ (Reception) denotes

the state where the GPS signal is received, while L stands for

loss of the GPS signal. The transition probabilities (1−q) and
(1 − p) between these states determine the severeness of the

degradation, where the probability of loosing the GPS signal

is given by (1−p) and the burstiness of the distortion is given

by q, the probability of remaining in state ’L’.

1 − p

p

1 − q

qR L

Fig. 7. Gilbert-Elliot channel model

Both probabilities have been estimated by analyzing long

term statistics of a low cost GPS receiver placed in our labo-

ratory one meter away from the window. This position inside

the building has a degraded visibility of GPS satellites and

was meant to be comparable to GPS receiving conditions in

narrow street canyons. The obtained probabilities are p = 0.99
and q = 0.82. In order to model an even more unreliable GPS

channel, we used the probabilities p′ = p

1.1
and q′ = 1.1·q.

By this, for 43 percent of all GPS sampling times no position

information is available.

The CDF plots depicted in figure 8 visualize the obtained

results. In comparison to figure 6, a decreased performance

can be seen, which is not surprising due to the degraded GPS

reception. In 67 percent of all estimates the GPS positioning

error is now equal to or smaller than 45.68 [m], whereas the

error is smaller than or equal to 31.94 [m] with the sensor

fusion approach.

The corresponding performance indicators of the obtained

errors are outlined in table II. Again, the hybrid approach

performs best. We conclude that our approach is able to

enhance the robustness of positioning.
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Fig. 8. Cumulative density function of the positioning errors for a degraded
GPS channel

Approach: RMS Error: Mean abs. Max. abs. Error
Error: Error: Variance:

GPS 60.17 [m] 43.65 [m] 263.55 [m] 1715.24 [m2]

Sensor 34.03 [m] 27.77 [m] 115.63 [m] 386.86 [m2]
Fusion

TABLE II
ERROR PROPERTIES OF LOCALIZATION FOR A DEGRADED GPS CHANNEL

In the following, we illustrate the effect of the loss of the

GPS signal by means of an example. Figure 9 contains a part

of the trajectory where a drop out of the GPS signal occurred.

Again, the bold black line is the true trajectory. The grey dots

depict instantaneous GPS measurements and the section of the

trajectory where there is no GPS signal available can be seen

clearly. The grey line shows the results obtained by Kalman

filtering the GPS measurements. As the Kalman filter can only

predict the position during the absence of the GPS signal, its

positioning error increases over time. The prediction results

in the straight line seen in the figure. As soon as GPS is

available again, the Kalman filter recovers. The thin black

line corresponds to the trajectory estimation calculated by

our sensor fusion system. During the drop out of GPS, this

system is still able to follow the true trajectory quite well by

performing dead reckoning on the filtered gyroscope turn rates

and GSM based velocity estimates.

In Figure 10, the positioning error of a larger part of the

reference trajectory is plotted over time. It can be clearly seen

that the error of our hybrid positioning system (black line)

increases only mildly during drop out, while it rises quickly

in the case of GPS-only positioning (grey line).

D. Comparison of GSM based Velocity Estimates with Odome-

ter Data

Finally we investigated the impact of the GSM based veloc-

ity estimates on the positioning performance as compared to

speed information obtained from the vehicle’s CAN interface.

A car’s odometer must comply to European regulations [15]:

the speed estimate is not allowed to be lower than the true

value and must not exceed the true value by more than 10

percent plus 4 [ km
h
]. We conducted experiments simulating a
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perfect odometer and an odometer with a maximum tolerable

error, both for perfect GPS reception. The obtained results are

depicted in figure 11.
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Compared to an ideal odometer (solid grey line), our ap-

proach (black line) performs quite well. If the perfect odometer

is used in the sensor fusion, in 67 percent of all estimations



the positioning error is smaller than or equal to 21.88 [m].

The dashed grey line corresponds to the results obtained by an

odometer with a maximum allowable error. Here a positioning

error of 26.77 [m] or less is achieved in 67 percent.

The corresponding performance indicators of the obtained

errors are shown in table III. Comparing these results to those

obtained by GSM based velocity estimation, see table I, we

can state that GSM based velocity estimates are indeed a

competitive alternative to the car’s odometer measurements.

Approach: RMS Error: Mean abs. Max. abs. Error
Error: Error: Variance:

Odometer, 21.03 [m] 18.45 [m] 17.10 [m] 101.91 [m2]
no Error

Odometer, 25.64 [m] 23.13 [m] 64.00 [m] 122.39 [m2]
max. Error

TABLE III
ERROR PROPERTIES OF LOCALIZATION UTILIZING TACHOMETER DATA OF

DIFFERENT PRECISION

V. CONCLUSIONS

In this paper we have proposed a positioning system for sup-

porting GPS localization with GSM based velocity estimates

and gyroscope turn rate measurements. No active connection

is required to compute GSM based speed estimates, thus no

service charges will emerge from such an approach.

Experimental results show that positioning using this ap-

proach is more accurate and more robust compared to GPS-

only positioning. We also replaced the GSM based velocity

estimates with perfect odometer data and it turned out that

our approach delivers positioning estimates of only slightly

degraded quality. Thus, the velocity estimates obtained by

GSM seem to be a viable alternative to odometer readings

which require access for the vehicle’s CAN bus.

However, so far we assumed perfect time and frequency

synchronization in the GSM receiver. These imperfections

need to be taken into account in future work.

We will also focus on an analytical description of the

measurement noise of the GSM based velocity estimations in

order to obtain even more accurate speed information.
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