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Abstract
In this paper we present an analytic derivation of the moments

of the phase factor between clean speech and noise cepstral

or log-mel-spectral feature vectors. The development shows,

among others, that the probability density of the phase factor is

of sub-Gaussian nature and that it is independent of the noise

type and the signal-to-noise ratio, however dependent on the

mel filter bank index. Further we show how to compute the

contribution of the phase factor to both the mean and the vari-

ance of the noisy speech observation likelihood, which relates

the speech and noise feature vectors to those of noisy speech.

The resulting phase-sensitive observation model is then used in

model-based speech feature enhancement, leading to significant

improvements in word accuracy on the AURORA2 database.

Index Terms: model-based feature enhancement, phase-

sensitive observation model, phase factor distribution

1. Introduction

Model-based speech feature enhancement is a front-end tech-

nique, where the noise-free speech cepstral or log-mel-spectral

feature vectors are estimated from the noisy observations based

on an a priori model of clean speech and noise and an observa-

tion model relating the two to the noisy speech feature vectors.

This approach to noise robust speech recognition has gained

considerable interest in recent years as it approaches the recog-

nition performance of back-end techniques, where the acous-

tic models of clean speech are modified to reflect the observed

noisy speech, while being at the same time computationally less

demanding.

As the relationship between clean speech and noise feature

vectors, x and n, and those of noisy speech y is highly non-

linear, several approximations have been proposed to model

the observation probability p(y|x,n). The most widely used

and at the same time the simplest approach is to neglect any

phase difference between speech and noise resulting in a Dirac

impulse for the aforementioned probability density function at

the location y = x + log(1 + exp(n − x)) (assuming log-

mel-spectral feature vectors). However, it is well-known that a

more accurate model is obtained if a phase factor α, which re-

sults from the unknown phase between the complex speech and

noise short-term discrete-time Fourier transform, is taken into

account [1, 2, 3, 4]. While in most cases the probability den-

sity of the phase factor is assumed to be a zero mean Gaussian

whose variance is determined experimentally on stereo training

data, Faubel et al. [4] determined the density by Monte Carlo

simulations and showed experimentally that it is sub-Gaussian,

approaching a Gaussian density only for higher mel filter bank

bins. Subsequently, the observation probability p(y|x,n) can

be determined either by Vector Taylor Series approximation up

to linear [5] or higher-order terms [3] or by Monte Carlo In-

tegration [4]. An analytic expression can be found in case the

phase factor is assumed to be Gaussian distributed [1].

In speech feature enhancement the mean, and in case of

uncertainty decoding also the variance, of the posterior p(x|y)
needs to be computed. Since a numerical evaluation of the re-

sulting integrals is computationally very demanding if not al-

most impossible, the observation probability is approximated

by a Gaussian, where the effect of the phase factor is either

modelled as a contribution to the mean [4], to the variance [2]

or to both mean and variance [3].

In this paper we show how the moments of the phase fac-

tor can be computed analytically, rendering stereo training data

obsolete. From this derivation we can confirm the experimental

observation made by others that the density of the phase fac-

tor is sub-Gaussian and that it is independent of the noise type

and the signal-to-noise ratio. A Taylor series expansion is then

carried out to obtain mean and variance of p(y|x,n), which

is assumed to be Gaussian. Clearly, the phase factor delivers

both a contribution to the mean (a bias term) and variance of

the observation probability and the best recognition results are

obtained if both are accounted for.

The paper is organized as follows. After a short introduc-

tion to model-based speech feature enhancement incorporating

an a priori model of clean speech which accounts for inter-

frame correlations, we consider the phase-sensitive observation

model. Next, we show how the moments of the phase factor can

be computed analytically, closing with a comparison with em-

pirically determined parameters. Finally, we present recogni-

tion results on the AURORA2 database providing experimental

evidence of the superiority of the phase-sensitive observation

model to its phase-insensitive counterpart.

2. Model-Based Feature Enhancement

Given a sequence of (possibly corrupted) feature vectors yT
1 =

(y1, ..., yT ), a key element of speech feature enhancement is

the posterior p(xt|yT
1 ) of the clean speech feature xt or, in

case the noise feature nt is modelled as a random variable

rather than an unknown parameter, the joint posterior p(zt =
(xt, nt)

′|yT
1 ). Hence, the effectiveness of a feature enhance-

ment scheme crucially depends on how well it can be deter-

mined. Knowledge of the posterior density enables the compu-

tation of an optimal estimate with respect to any criterion. For

example, the minimum mean squared error (MMSE) estimate

equals its mean. Furthermore, a measure of accuracy of the es-

timate can be obtained from the variance of the posterior. In the

Gaussian case the variance of the posterior is even identical to

the estimation error variance. Conceptually, the joint posterior

can be estimated recursively via the following equations:

p(zt|yt−1

1 ) =

Z

p(zt|zt−1)p(zt−1|yt−1

1 )dzt−1 (1)

p(zt|yt
1) =

p(yt|zt)p(zt|yt−1

1
)

R

p(yt|zt)p(zt|yt−1

1
)dzt

, (2)
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where we restrict ourselves to causal processing, i.e. rather than

computing p(zt|yT
1 ) we compute p(zt|yt

1).

From these equations it can be observed that the observa-

tion probability or likelihood p(yt|zt) is a key component for

the determination of the posterior. This term should be mod-

elled such that it both reflects the true dependency as accurately

as possible and at the same time is computationally tractable to

enable an, at least approximate, inference, i.e. recursive com-

putation of the posterior p(zt|yt
1), t = 1, . . . , T .

In the following we are going to develop such a model in-

corporating a novel analytical treatment of the phase factor be-

tween speech and noise.

3. A Phase-Sensitive Observation Model

We assume that the speech signal is corrupted by additive envi-

ronmental noise. Let Xt,k, Nt,k and Yt,k denote the complex-

valued short-time Discrete Fourier Transform coefficients in the

kth frequency bin, k ∈ [1, ..., K], and at discrete-time frame in-

dex t of the clean speech, noise and noisy speech, respectively.

Their relationship in the power spectral domain follows to be

|Yk|2 = |Xk|2 + |Nk|2 + 2|Xk||Nk | cos (θk) , (3)

with θk being the relative phase between the speech and noise

short-term discrete-time Fourier transforms. Here and in the

following we omit the frame index t for ease of notation. The

representation in the ith mel-frequency bin thus becomes

Ỹi =X̃i + Ñi + 2αi

q

X̃iÑi, i ∈ [1, ..., I ] (4)

with (̃)i =
K
P

k=1

Wi,k|()k|2 and

αi =

K
P

k=1

Wi,k|Xk||Nk| cos θk

p

X̃iÑi

=

K
X

k=1

ci,k cos θk (5)

denoting the phase factor of the ith triangular-shaped mel filter

with coefficients Wi,k as derived in [6]. Translation of (4) to

the log-mel domain results in the phase-sensitive environment

model as given in [1]

yi = log
“

e
xi + e

ni + 2αie
xi+ni

2

”

(6)

= log (exi + e
ni) + log

 

1 + 2αi

e
ni−xi

2

1 + eni−xi

!

(7)

= log (exi + e
ni) + ϕ (αi, ni − xi) . (8)

A common but problematic approximation of (8) is

yi ≈ log (exi + e
ni) , (9)

where the phase-dependent term ϕ (αi, ni − xi) is neglected.

While the error due to this approximation is rather small when

clean speech and noise mix at different levels, i.e. |ni − xi| ≫
0, the opposite is true when they mix at levels where xi ≈ ni.

Since feature enhancement based on the phase-sensitive ob-

servation model presented in (6) can be expected to outperform

approaches based on the phase-insensitive model given by (9),

a way to incorporate the information provided by the phase-

dependent term into model-based feature enhancement is now

derived. In order to avoid dealing with the DCT matrix and its

pseudo-inverse, the derivation is carried out in the log-mel do-

main. Generalization to the cepstral domain is straightforward.

The non-linearity of (6) and (9) makes their application to

speech feature enhancement rather impractical. A common way

to circumvent dealing with this non-linearity directly is to first

expand the observation model y into a Vector Taylor Series and

later truncate it to linear terms, only. While this linearization

is usually carried out with respect to x and n and disregards

any terms of order 2 or higher [5], our approach is to expand

the observation model with respect to x, n and α, truncate the

series to linear terms in x and n and use all other terms up to

and including 2nd-order terms to model the linearization error.

Denoting the ith component of the expansion vectors of the

clean speech, the noise and the phase factor by x0

i , n0

i and α0

i

respectively, Taylor series expansion of yi with respect to xi, ni

and αi gives

yi =yi

`

x
0

i , n
0

i , α
0

i

´

+ J
i
x

`

xi − x
0

i

´

+ J
i
n

`

ni − n
0

i

´

+ J
i
α

`

αi − α
0

i

´

+
1

2
H

i
xx

`

xi − x
0

i

´2

+
1

2
H

i
nn

`
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0

i

´2

+
1

2
H

i
αα

`

αi − α
0

i

´2

+ H
i
xn

`

xi − x
0

i

´ `

ni − n
0

i

´

+ H
i
xα

`

xi − x
0

i

´ `

αi − α
0

i

´

+ H
i
nα

`

ni − n
0

i

´ `

αi − α
0

i

´

+ H.O.T . (10)

=yi

`

x
0

i , n
0

i , α
0

i

´

+ J
i
x

`

xi − x
0

i

´

+ J
i
n

`

ni − n
0

i

´

+ εi + H.O.T . (11)

=g(xi, x
0

i , ni, n
0

i , α
0

i ) + εi + H.O.T . (12)

with

J
i
x =

∂yi

∂xi

˛

˛

˛

˛

z
0
i

, J
i
n =

∂yi

∂ni

˛

˛

˛

˛

z
0
i

, J
i
α =

∂yi

∂αi

˛

˛

˛

˛

z
0
i

(13)

denoting the elements of the Jacobian matrix and

H
i
xn =

∂2yi

∂xi∂ni

˛

˛

˛

˛

z
0
i

, H
i
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∂2yi

∂xi∂αi
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˛

˛

˛

z
0
i

, H
i
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˛
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z
0
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H
i
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˛

˛

z
0
i

, H
i
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∂2yi
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i
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z
0
i

, H
i
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∂2yi
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˛

˛

˛

˛

z
0
i

(14)

denoting the corresponding elements of the Hessian matrix with

respect to xi, ni and αi, all evaluated at the expansion points

x0

i , n0

i and α0

i (abbreviated as z0

i ). By further neglecting higher

order terms (H.O.T .) and assuming the linearization error εi to

be Gaussian, the observation probability p(yi|xi, ni) becomes

Gaussian, too, with mean µy,i = g(xi, x
0

i , ni, n
0

i , α
0

i ) + E[εi]
and variance σ2

y,i = E[ε2

i ] − E[ε2

i ]
2.

4. Application to Feature Enhancement

The linearization of (6) is quite sensitive to the choice of the

expansion points. A common practice with regard to (2) is to

use prior knowledge about the estimation problem, which is

provided by p(zt|yt−1

1
) and p (α). While their means µz =

(µx, µn) and µα are used as expansion vectors, their covari-

ances Σz = (Σx,Σxn;Σnx,Σn) and Σα can be employed to

compute the mean and variance of the error term ε using (10).

The first and second central moments of the distribution of the

linearization error εi are thus given by

E[εi] =
1

2

“

H
i
xxσ

2

x,i + H
i
nnσ

2

x,i + H
i
αασ

2

α,i

”

(15)
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and

E[ε2

i ] =
“

J
i
α

”2

σ
2

α,i +
3

4

“

H
i
xx

”2

σ
4

x,i +
3

4

“

H
i
nn

”2

σ
4

n,i

+
1

4

“

H
i
αα

”2

E
ˆ

(αi − µα,i)
4
˜

+ H
i
xnσ

2

x,iσ
2

n,i

+ H
i
xασ

2

x,iσ
2

α,i + H
i
nασ

2

n,iσ
2

α,i, (16)

where the speech, the noise and the phase factor are assumed

to be uncorrelated. The approximation in (16) assumes the pos-

terior distribution of speech and noise to be jointly Gaussian,

allowing us to replace 4th-order moments by three times the

square of the 2nd-order moments. While the Gaussian assump-

tion is quite valid for the joint feature vector distribution of x

and n, it does not hold for the phase factor distribution, which

is of sub-Gaussian nature [1, 4].

A related approach has been proposed by Stouten et al. [3].

However, they only employed the first two terms in (15) and

only the first term in (16) to approximate the mean and the vari-

ance, respectively.

5. Moments of the Phase Factor
Distribution

The moments of the posterior p(zt|yt−1

1
) are a byproduct of

the enhancement scheme. Thus, the only unknowns remaining

are the 2nd and 4th central moments of the phase factor distribu-

tion. In contrast to [1], explicit knowledge of the phase factor

distribution is not required.

Since stereo training data comprising the noisy observation,

the clean speech and the noise only is usually not given, an

analytical solution to the required moments of the phase fac-

tor is desirable. Recalling (5), the phase factor of the ith mel-

frequency bin is given by αi =
PK

k=1
ci,k cos θk , with ci,k

collating all terms not depending on θk. The relative phases

θk, k ∈ [1, ..., K], are now assumed to be statistically indepen-

dent random variables each drawn from the uniform distribu-

tion over −π ≤ θk < π. The density of the random variable

uk = cos(θk) thus can be shown to be

p(uk) =

(

1

π

1√
1−u2

k

, for |uk| < 1

0, else.
(17)

The central moments of p(uk) can now be obtained by utilizing

the characteristic function φuk
(τ ) = E[ejτuk ] of the random

variable uk, which formally equals (up to a factor of 2π) the

inverse Fourier transform of p(uk).

More precisely, the nth-order derivative of φuk
(τ ) with re-

spect to τ evaluated at τ = 0 and divided by jn gives the nth

central moment of p(uk). From Fourier transform tables, the

characteristic function of the random variable uk can be found

to be φuk
(τ ) = J0(τ ), with J0 denoting the 0th-order Bessel

function. The characteristic function φũk
(τ ) of the random

variable ũk = ci,kuk is obtained by applying standard Fourier

transform rules which yield φũk
(τ ) = J0(ci,kτ ).

Since neighbouring short-term DFT-bins and thus the rela-

tive phases are asymptotically independent [7], the probability

density of the random variable αi can be expressed as the con-

volution of the probability densities of all terms under the sum.

Applying standard Fourier transformation rules, again, we find

the characteristic function of the random variable αi to be

φαi
(τ ) =

K
Y

k=1

J0(ci,kτ ). (18)

Differentiating (18) n times with respect to τ , dividing the out-

come by jn and evaluating the resulting function at τ = 0 fi-

nally gives the nth central moment. In particular, we find

E[αi] = µα,i = 0 = E[α2n−1

i ], n = 1, 2, ... (19)

E[α2

i ] = σ
2

α,i =
1

2

K
X

k=1

c
2

i,k (20)

E[α4

i ] = 3E[α2

i ]
2 − 3

8

K
X

k=1

c
4

i,k ≤ 3E[α2

i ]
2

(21)

with (19) confirming the zero mean assumption made in litera-

ture and (21) imposingly pointing out the sub-Gaussian nature

of the phase factor distribution. Replacing the weights ci,k by

their definition introduced in (5), Eq. (21) further indicates that

E[α4

i ] approaches 3 ·E[α2

i ]
2 with an increasing number of non-

zero mel filter weights contributing to ci,k .

Assuming the magnitude spectra of the clean speech |Xk|
and the noise |Nk| to be constant over the short-term DFT-bins

covered by the non-zero elements of the according triangular-

shaped mel filter i finally yields the required central moments

to be independent of the clean speech and the noise and thus to

be independent of both, noise type and signal-to-noise ratio:

E[α2

i ] = σ
2

α,i =
1

2

K
X

k=1

W
2

i,k

, 

K
X

k=1

Wi,k

!2

(22)

E[α4

i ] = 3E[α2

i ]
2 − 3

8

K
X

k=1

W
4

i,k

, 

K
X

k=1

Wi,k

!4

. (23)

However, the estimated variance depends on the shape of the

analysis window. To be more specific, Brillinger [8, Theorem

5.6.4] found that if h is a tapered window of length L, e.g. the

commonly used Hamming window, the variance of the averaged

periodograms is larger than for the untapered (rectangular) case

by a factor of [8, 7]

Fh = L

L
X

l=1

h
4

l

, 

L
X

l=1

h
2

l

!2

≥ 1. (24)

Hence, strictly speaking, equations (22) and (23) hold for a

rectangular analysis window, only. The variance for a tapered

window h is thus given by Fh · E[α2

i ]. Comparing the result-

ing variances with the ones determined experimentally, based

on the evaluation of (5) with stereo data from the AURORA2

database for different noise types and different SNRs, validates

our results, as depicted in Figure 1. The effect on the 4th central

moment is considered to be marginal and (23) can be applied

once the corrected variance has been determined.

6. Experimental Results

The experiments were conducted on the test sets A and B of

the AURORA2 database. Training has been carried out on the

clean speech. The ETSI standard front-end feature extraction

algorithm has been modified by replacing the log-energy fea-

ture with c0 and using the power spectral density rather than the

spectral magnitude as the input of the mel filter bank. The base-

line feature enhancement is similar to the one described in [5],

differing however in the fact that we use GPB-inference of order

one in a system comprising switching linear dynamic models

(SLDMs) with M = 16 individual dynamic models to describe

the clean speech trajectory. The noise prior is modelled by a
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Figure 1: Analytically found and experimentally determined

phase factor variances on a subset of the AURORA2 database

single Gaussian trained on the first and last 10 frames of each

utterance. In addition, cepstral mean normalization (CMN) was

applied to the enhanced features.

We compare the performance of the phase-insensitive ob-

servation model (9) with the phase-sensitive model derived in

this paper. The iterated extended Kalman filter (IEKF) is used

to compute (2), with the number of additional iterations set to

1. To distinguish the observation models, our phase-sensitive

observation model is denoted by IEKF-α while the phase-

insensitive observation model is just denoted by IEKF. Since

the model-based feature enhancement applied in this paper not

only delivers a point estimate for the clean speech feature vec-

tor but also a measure of its accuracy, namely the variance of its

posterior, application of uncertainty decoding (UD) [9], denoted

by IEKF-α-UD, is also investigated.

The results on the AURORA2 recognition task can be stud-

ied in Table 1. The recognition accuracy is increased by ap-

proximately 2.5% absolute on test set A and B when using the

phase-sensitive observation model IEKF-α. Further improve-

ments are obtained when uncertainty decoding is applied. Inter-

estingly, the incorporation of the phase factor into the observa-

tion model is found to become more important with decreasing

SNR values – thus confirming our thesis stated in section 3.

SNR test set A test set B

[dB] IEKF IEKF-α IEKF-α-UD IEKF IEKF-α IEKF-α-UD

20 98.56 98.72 98.72 98.53 98.53 98.58
15 96.93 97.26 97.37 97.03 97.36 97.38
10 92.70 93.73 94.28 92.39 93.38 93.62
5 79.74 83.07 84.42 78.87 82.40 83.49
0 49.54 56.94 59.32 49.68 56.97 58.50

AVG 83.50 85.95 86.82 83.30 85.73 86.31

Table 1: Averaged recognition accuracies on test set A and B of

the AURORA2 database

We also compared our phase-sensitive observation model IEKF-

α with other phase-sensitive models in the literature. If only

the effect of the phase-factor on the mean of εi is taken into

account, an approach similar to [4], average recognition accura-

cies of 84.21% and 83.76% are obtained on test set A and test

set B, respectively. If only the effect on the variance of εi is con-

sidered, similar to [2], the averaged word accuracy is 85.23% on

test set A and 85.41% on test set B. And with (16) and (15) ap-

proximated according to Stouten et al. [3], we achieved recog-

nition accuracies of 85.30% and 85.03% on test set A and B of

the AURORA2 database.

7. Conclusions

In this paper we have first studied an observation model ac-

counting for the relative phase between the complex short-term

DFT-bins of the clean speech signal and the noise. While com-

mon approaches assume the involved phase factor to be Gaus-

sian distributed and base the estimation of the required moments

on available stereo training data, we proved analytically that the

phase factor distribution is of sub-Gaussian nature and more-

over derived a way to analytically compute all central moments

solely based on the used mel filter bank. In doing so, we implic-

itly showed their independence of noise type and signal-to-noise

ratio. Incorporation of the phase-sensitive observation model

into a model-based feature enhancement scheme and its applica-

tion to the AURORA2 recognition task revealed the superiority

of the phase-sensitive observation model to its phase-insensitive

counterpart and different other phase-sensitive models proposed

in the literature.
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