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Abstract

In this paper we present an Uncertainty Decoding rule
which exploits feature reliability information and inter-
frame correlation for noise robust speech recognition.
The reliability information can be obtained either from
conditional Bayesian estimation, where speech and noise
feature vectors are tracked jointly, or by augmenting
conventional point estimation methods with heuristics
about the estimator’s reliability. Experimental results
on the AURORA2 database demonstrate on the one
hand that Uncertainty Decoding improves recognition
performance, while on the other hand it is seen that the
severe approximations needed to arrive at computation-
ally tractable solutions have their noticable impact on
recognition performance.

Introduction

Today’s speech recognizers are notorious for their lack
of robustness towards a mismatch between training and
testing environments, be it due to additive or convolu-
tional noise, or any other type of distortion. While a
plethora of approaches has been proposed to mitigate the
detrimental effect of environmental noise, a systematic
treatment in a rigorous probabilistic framework, which in
some sense reconciles front-end to back-end techniques,
has gained attention only fairly recently under the name
Uncertainty Decoding (UD), see e.g. [1–6]. This term
has been phrased for a class of robustness enhancing
algorithms in automatic speech recognition that replace
point estimates of the clean speech signal and plug-in
rules by posterior densities and optimal decision rules. In
doing so, the imperfections of the enhancement stage are
accounted for in the recognizer by placing more emphasis
on those parts of the signal which have been restored
more reliably. It is therefore also able to cope with
non-stationary distortions, which pose a major challenge
to many of the more conventional approaches to robust
speech recognition.

In this paper we first rederive an Uncertainty Decoding
rule which takes advantage of a relaxed conditional
independence assumption and which we have previously
introduced in [6], however with a somewhat more
involved derivation. Then we take a conditional Bayesian
estimation point of view and illustrate how the posterior
of the clean speech feature vector, given the observed
corrupted feature vectors can be estimated. Emphasis is
placed on the importance of the variance of the posterior,
which, in the case of Gaussians, equals the estimation
error variance. Next, a heuristics is introduced how this
variance can be estimated even if the aforementioned

posterior is not available. As of today, however, this
approach is barely able to compete with conventional so-
phisticated noise robustness enhancing techniques, such
as the ETSI Advanced Front End (AFE) [7]. However,
any speech feature enhancement scheme can be improved
by UD, as is demonstrated with an oracle experiment
employing the AFE.

Uncertainty Decoding for ASR

Given a sequence of feature vectors xT
1 = (x1, . . . ,xT ) of

length T extracted from an utterance, the classification
task amounts to finding that sequence of words Ŵ from
a given vocabulary which maximizes the joint probability
p(W,xT

1
) or, equivalently,

Ŵ = arg max
W

p(xT
1
|W) · P (W). (1)

The a priori probability of the word sequence, P (W), is
provided by the language model, while the acoustic model
is concerned with computing p(xT

1
|W). In a HMM-based

speech recognizer this is accomplished by introducing the
sequence of hidden states qT

1 = (q1, . . . , qT ) underlying
the sequence of observations:

p(xT
1
|W) =

∑

{qT

1 }

p(xT
1
|qT

1
) · P (qT

1
|W) (2)

where the summation is carried out over all state se-
quences within W.

In many practical situations there exists a mismatch
between training and testing conditions. This can
be expressed by the fact that the sequence of test
features xT

1
, which are representative of the training

conditions, and which are denoted as ”clean” features
in the following, is not observable. A corrupted version
yT

1 is observed instead, where the corruption is caused
by e.g. acoustical environmental noise.

The recognition task is stated now as finding the most
probable word sequence given yT

1 :

Ŵ = arg max
W

p(yT
1
|W) · P (W). (3)

Taking yT
1

as if they were the ”clean”, uncorrupted data,
i.e. interpreting yT

1 as an estimate of xT
1 to be used

in (1) results in the well-known poor performance of
speech recognition in the presence of a mismatch between
training and testing conditions.

Basically two classes of approaches for the task of
recognizing corrupted speech exist. The first class
comprises back-end methods. Starting from eq. (3), the
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Figure 1: Bayesian network considering temporal correlation
between features.

likelihood of p(yT
1
|W) is computed based on a modified

or adapted model (e.g. by Maximum Likelihood Linear
Regression, MLLR) for p(xT

1
|W). The second class is

made up of front-end approaches which use the model
for clean speech p(xT

1 |W) and attempt to estimate the
clean speech feature sequence xT

1
from noisy input data

yT
1 . An example of the latter is the ETSI Advanced Front

End [7].

In an optimal decoding rule, however, the reliablility
of the clean feature estimates would have to be taken
into account. To incorporate the reliablity information
into the speech recognition system while still using the
acoustic model trained under uncorrupted conditions, the
unobservable clean feature sequence xT

1
is introduced as

a hidden variable:

p(yT
1
|W) =

∫

{xT

1 }
p(yT

1
|xT

1
)p(xT

1
|W)dxT

1
, (4)

The marginalization has to be carried out over all
possible clean feature sequences of length T , indicated
by {xT

1
}.

The Bayesian network of Fig. 1 depicts the assumed
statistical dependencies among the random variables
under consideration. Note that the observed feature
vectors are statistically independent of the HMM states,
if the clean features are given; and further note that
a direct statistical dependency among successive clean
feature vectors is assumed, thus relaxing the well-known
conditional independence assumption.

Introducing the HMM state sequence qT
1 , replacing any

condition on W, the search now has to compute

p(yT
1
|qT

1
) =

∫

{xT

1 }
p(yT

1
|xT

1
)p(xT

1
|qT

1
)dxT

1
, (5)

where

p(xT
1 |q

T
1 ) =

T
∏

t=1

p(xt|xt−1, q
T
1 ). (6)

Using (6) in (5) we obtain

p(yT
1
|qT

1
)

=

∫

{xT

1 }
p(yT

1
|xT

1
)

T
∏

t=1

p(xt|xt−1, q
T
1
)dxT

1

= C1

∫

{xT

1 }

p(xT
1
|yT

1
)

p(xT
1
)

T
∏

t=1

p(xt|xt−1, q
T
1 )dxT

1

= C1

∫

{xT

1 }

T
∏

t=1

p(xt|xt−1,y
T
1 )

p(xt|xt−1)
p(xt|xt−1, q

T
1 )dxT

1 (7)

where C1 is a constant. In order to further sim-
plify (7) we first assume that

∏T

t=1
p(xt|xt−1, q

T
1

) ≈
∏T

t=1
p(xt|xt−1, qt), an approximation that can reason-

ably be justified by the fact that the dependency between
xt and qt is stronger than between xt and past/future
HMM states once xt−1 is given. Disregarding also the
dependency on xt−1 allows us to interchange the order
of integral and product:

p(yT
1 |q

T
1 ) ≈ C1

∫

{xT

1 }

T
∏

t=1

p(xt|yT
1
)

p(xt)
p(xt|qt)dx

T
1

= C1

T
∏

t=1

∫

{xt}

p(xt|yT
1 )

p(xt)
p(xt|qt)dxt, (8)

i.e. the integral over the feature space {xT
1 } can now be

evaluated as the product of T integrals, each over the
space of an individual feature vector xt, t = 1, . . . , T .

A comparison of (8) with the computation of the acoustic
model likelihood in a conventional speech recognizer

p(xT
1 |q

T
1 ) =

T
∏

t=1

p(xt|qt) (9)

reveals that the optimization problem (3) differs from
the optimization problem for clean speech in the classical
HMM framework (1) solely with respect to the likelihood:

pLH(yT
1 |qt) =

∫

{xt}

p(xt|yT
1 )p(xt|qt)

p(xt)
dxt. (10)

This variant of Uncertainty Decoding has been first pub-
lished in [6], where however a more involved derivation
was given. In UD, instead of evaluating the likelihood
p(xt|qt) for a point estimate E[xt|yT

1
], i.e. setting

p(xt|yT
1
) = δ(xt − E[xt|yT

1
]) in eq. (10), the entire

posterior, i.e. also its variance, is taken into account.

UD Based on Posterior Estimation

The key element of the Uncertainty Decoding rule is the
clean feature posterior p(xt|yT

1 ), and the success of UD
crucially depends on how well it can be determined.

Knowledge of the posterior density enables one to com-
pute an optimal estimate with respect to any criterion.
For example the minimum mean squared error (MMSE)
estimate equals its mean. Furthermore, a measure of
accuracy of the estimate can be obtained form the vari-
ance of the posterior. In the Gaussian case the variance
of the posterior is even identical to the estimation error
variance.

Conceptually, the posterior can be estimated recursively
via the following equations1:

p(xt|y
t−1

1
) =

∫

p(xt|xt−1)p(xt−1|y
t−1

1
)dxt−1 (11)

p(xt|y
t
1
) =

p(yt|xt)p(xt|y
t−1

1
)

∫

p(yt|xt)p(xt|y
t−1

1
)dxt

(12)

1Here we restrict ourselves to causal processing, i.e. rather than
computing p(xt|yT

1
) we compute p(xt|yt

1
).



However, in practice these equations are often compu-
tationally intractable. In the case of speech feature
enhancement the key components have been chosen as
follows to arrive at a realizable solution:

a) For the dynamical model of the clean speech feature
trajectory, p(xt|xt−1), switching linear dynamical
models (SLDM) have been employed [8].

b) Different approximations of the highly nonlinear
observation model have been proposed [9] to arrive
at a tractable p(yt|xt).

c) Extended or Unscented Kalman Filtering as well
as Particle Filtering approaches have been used
as inference algorithm to compute p(xt|yT

1
). If

SLDMs are employed to model the speech dynamics
they have to be embedded in an algorithm which
infers the switching variable, such as the Generalized
Pseudo-Bayesian Estimator (GPB) of first or second
order and the Interacting Multiple Model algorithm
[10].

If the posterior and the other densities in (10) are
approximated by Gaussians, the integral can be solved
analytically and the application of the UD rule becomes
computationally tractable [6].

UD based on a Variance Compensation

Scheme

While the above is a theoretically well motivated ap-
proach, in practice many difficulties arise due to the
complicated dynamics of clean speech and the extremely
nonlinear observation model.

An alternative, which less radically breaks with conven-
tional approaches to noise-robust speech recognition, is
to adjoin the point estimate x̂t(yt) of a speech feature
enhancement scheme with an estimate of its estimation
error variance by some heuristics, see e.g. [11].

The observation likelihood is then given by

pLH(yt|qt =n)

= C2

M
∑

m=1

cn,m N
(

x̂t(yt); µn,m,Σn,m+Σt

)

(13)

Here, cn,m, µn,m and Σn,m are the weight, mean and
(diagonal) covariance matrix of the m-Gaussian of the
(clean speech) acoustic observation model of the n-th
HMM state, and Σt = E[(xt − x̂t(yt))(xt − x̂t(yt))

′]
is the estimation error covariance, while C2 is again a
constant.

Let σ2

t,i be the (i, i)-th element of the (diagonal) covari-
ance Σt. In [11] it has been proposed that the estimation
error variance σ2

t,i is proportional to the amount of noise
reduction:

σ2

t,i = αi(yt,i − x̂t,i)
2. (14)

Here, yt,i and x̂t,i are the i-th component of the noisy
speech and estimated clean speech feature vector, respec-
tively, and αi is a scaling factor.

The assumption underlying this heuristics is that the

speech enhancement introduces more distortions when
a great amount of noise is removed. As the noise is
unknown it is replaced by its estimate yt − x̂t. This so-
called dynamic variance compensation led to significant
error rate reduction in the context of recognition of
reverberant speech.

The scaling factor α can either be estimated on adapta-
tion data using the EM algorithm [11] or set to unity for
simplicity.

Experimental Results

The experiments were performed on test set A of the
AURORA2 database. The AURORA2 database is a
subset of the TI Digits recognition task to which noise
was artificially added at different SNR levels. The test
set consists of four different noise types. Training has
been carried out on clean speech. We modified the ETSI
standard front-end extraction in the same manner as in
[8] by replacing the energy feature with c0 and using the
squared power spectral density rather than the spectral
magnitude as the input of the Mel-frequency filter-bank.

Oracle Experiment

To show how speech recognition systems can benefit
from incoorporating uncertainty information, an oracle
experiment is carried out, first. Given an estimate x̂AFE

t

of the clean speech feature obtained from the ETSI
advanced front-end (AFE) [7], the posterior p(xt|yt

1)
will be modelled as a Gaussian centered at x̂AFE

t , the
estimate of the clean speech feature vector provided by
the AFE. The covariance E[(xt − x̂AFE

t )(xt − x̂AFE
t )′] of

the posterior is calculated as the empirical covariance
of the deviation of the estimated from the true clean
speech features. Thus, perfect knowledge of the true
feature is assumed. To take into account that such
perfect knowledge will never be available, the true error
is averaged over the sliding window of length 2L + 1
(L = 5) centered at the current frame, simulating
an estimator with limited accuracy. While the word
accuracy obtained by the AFE is 88.45%, Table 1 shows
that Uncertainty Decoding with the oracle covariance
improves performance to 91.31%.

SNR Sub. Bab. Car Exh. AVG

20dB 98.77 98.34 99.22 99.01 98.84
15dB 97.70 97.34 98.57 97.99 97.90
10dB 94.96 94.86 97.64 96.05 95.88
5dB 89.10 90.51 93.20 88.43 90.31
0dB 74.06 70.98 77.60 71.83 73.62

AVG 90.92 90.41 93.25 90.66 91.31

Table 1: AFE with UD using the oracle covariance calculated
over a sliding window of size 2L+1 (L=5)

Comparison of Variance Estimates

Next we compare different estimates of the estimation
error variance with respect to their effect on the recog-
nition accuracy. The baseline system is similar to the
one described in [8], differing however in the fact that
we jointly track both the clean speech and noise feature



vector [12]. Further characteristics of the system are:

• An SLDM with 16 individual linear dynamical mod-
els to describe the clean speech feature trajectories.

• An observation model according to yt = xt +log(1−
ent−xt), where the SNR variable rt := xt −nt is im-
proved by iterated Taylor Series approximation [9].

• Inference is carried out using the GPB algorithm of
order one.

In addition, Cepstral Mean Normalization (CMN) was
applied to the enhanced features. If only the mean
of the posterior is used in the recognizer, the baseline
recognition accuracy is 83.7%.

The inference algorithm estimates the variance of the
clean speech posterior in addition to its mean. It turned
out that the variance is overestimated and needs to be
upper bounded by 0.05 times the variance of the prior
p(xt) [3]. Recognition results are given in Table 2.

SNR Sub. Bab. Car Exh. AVG

20dB 98.77 97.43 99.25 97.47 98.23
15dB 96.93 94.80 98.69 95.50 96.48
10dB 93.77 89.42 96.42 89.79 92.35
5dB 83.73 76.09 87.50 77.66 81.25
0dB 58.89 43.02 63.88 53.32 54.78

AVG 86.42 80.15 89.15 82.75 84.62

Table 2: Uncertainty Decoding based on clean speech
posterior estimation.

In Table 3 the effect of using the variance estimate
according to (14) can be studied. The recognition
accuracy is improved to 85.06%.

SNR Sub. Bab. Car Exh. AVG

20dB 98.68 98.55 99.19 98.55 98.74
15dB 97.42 97.04 98.51 96.64 97.40
10dB 93.71 93.20 96.78 91.92 93.90
5dB 82.35 81.59 85.74 80.38 82.52
0dB 54.62 49.61 54.46 52.18 52.72

AVG 85.36 84.00 86.94 83.93 85.06

Table 3: Uncertainty Decoding with heuristics (14) to obtain
estimation error variance.

Conclusions

In this paper we have first motivated Uncertainty De-
coding by deriving the decoding rule from an optimiza-
tion problem of recognizing speech in the presence of
corrupted features. While the estimation of the clean
speech feature posterior in a Bayesian framework and its
use in Uncertainty Decoding is a theoretically appealing
approach, the achieved recognition performance is often
worse than that of conventional approaches such as the
ETSI Advanced Front End. This is probably due to
the severe approximations that are needed to arrive
at a computationally tractable solution. However, the
potential of using feature uncertainty as demonstrated
by the oracle experiment and the power of conditional

Bayesian estimation known from many other applications
call for further exploration of this approach to robust
speech recognition.
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