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Abstract

In this paper we present a new feature space dereverberation

technique for automatic speech recognition. We derive an ex-

pression for the dependence of the reverberant speech features

in the log-mel spectral domain on the non-reverberant speech

features and the room impulse response. The obtained observa-

tion model is used for a model based speech enhancement based

on Kalman filtering. The performance of the proposed enhance-

ment technique is studied on the AURORA5 database. In our

currently best configuration, which includes uncertainty decod-

ing, the number of recognition errors is approximately halved

compared to the recognition of unprocessed speech.

Index Terms: automatic speech recognition, dereverberation

1. Introduction

Automatic speech recognition is often considered a key tech-

nology for human machine communication. In certain applica-

tions distant-talking microphones are preferred to close-talking

ones because of convenience or safety reasons. However, the in-

creased speaker-microphone distance results in degraded signal

quality at the microphones due to the pickup of acoustic envi-

ronmental noise and reverberation. The latter is a convolutional

distortion which is caused by reflections of the speech signals

on walls and objects. The source signal is then superposed with

its delayed and attenuated versions at the microphone.

Basically, there are two groups of approaches to cope with

the convolutional distortion caused by reverberation. On the one

hand, there are the signal based methods which try to derever-

berate the incoming signal prior to recognition. In this category

belong approaches like beamforming, inverse filtering or cep-

stral mean subtraction. An overview of these approaches can be

found in [1]. On the other hand, the model based methods try

to adapt the parameters of the recognizer to the effects of rever-

beration. These approaches comprise the adaptation of HMM

means and covariances [2], [3] , state splitting [4] or adaptation

of the likelihood evaluation within the Viterbi decoding [5]. All

of these methods have shown to improve recognition results in

reverberant environments. However, the adaptation of HMM

parameters requires a large computational effort.

In this paper we propose to use a feature based method.

Instead of trying to dereverberate the time signal itself, we con-

centrate on the dereverberation of the extracted features used

for recognition. The motivation for this is that dereverberation

of the features as opposed to the spectrum requires much less

information about the room impulse response from the speaker

to the microphones. Particularly, our approach only requires an

estimate of the reverberation time.

This work is partially supported by the DFG RTG GK-693 of the
Paderborn Institute for Scientific Computation (PaSCo).

The organization of the paper is as follows. In section 2

we present the basics of feature based dereverberation, i.e. the

observation model, the model of the room impulse response,

the posterior estimation method and the uncertainty decoding

rule. In section 3 we list the results of recognition experiments

which have been carried out on the AURORA5 database. The

paper ends with some conclusions.

2. Feature space dereverberation

Commonly, in automatic speech recognition the incoming

speech signal is processed by a a front-end to extract features

which are successively used for recognition. We will consider

the widely used Mel Frequency Cepstral Coefficients (MFCCs)

obtained using the ETSI standard front end (SFE) [6]. How-

ever, we propose to perform the dereverberation on the log mel

spectral coefficients (LMSCs) which are computed at an inter-

mediate stage. The reason is that unlike MFCCs, the LMSCs

take values in the same range.

2.1. Observation model

The single channel recorded discrete-time signal ỹ(l), where l
denotes the time index, is assumed to result from the convolu-

tion of the desired speech source signal x̃(l) with the room im-

pulse response (RIR) h̃(l) from the speaker to the microphone:

ỹ(l) = x̃(l) ∗ h̃(l) =

Lh
X

p=0

h̃(p)x̃(l − p). (1)

Additive environmental noise is first ignored for the derivation

and the RIR is approximated to be of finite length Lh + 1. The
source signal can be expressed by its Gabor representation [7]

x̃(l) =
X

m

N−1
X

k=0

X̃(m,k)w̃s(l − mB)ej 2π
N

k(l−mB)
(2)

with its short time discrete Fourier transform (STDFT)

X̃(m,k) =
X

l

x̃(l)w̃a(l − mB)e−j 2π
N

k(l−mB). (3)

Here, w̃s(l) and w̃a(l) denote the synthesis and analysis win-

dows of finite length Lw which are biorthogonal to each other

[7]. Further, m and k denote the block and frequency index, re-

spectively, B denotes the frame advance and N is the frequency

resolution.

The influence of reverberation can be interpreted as the ap-

plication of a Linear Time Invariant (LTI) system to the source

signal. Hence, using (1) and (2), the STDFT of ỹ(l) can be



approximated by the convolution [8]

Ỹ (m,k) ≈

LH
X

m′=0

X̃(m − m′, k)Hm′,k. (4)

where LH = ⌊(Lh + Lw − 1) /B⌋ and

Hm,k = ej 2π
N

k(Lw−1)
2Lw−2
X

p=0

h̃(mB + p − Lw + 1)

× w̃(Lw − 1 − p)e−j 2π
N

kp
(5)

with w̃(l) defined by w̃(l) =
PLw−1

n=0 w̃a(n)w̃s(n + l).
The logarithmic mel-spectrum is obtained by applying a

mel filter bank to the power spectrum and computing the log-

arithm:

ym,κ = log

2

4

N (up)(κ)
X

k=N (lo)(κ)

|Ỹ (m, k)|2Λκ(k)

3

5 , (6)

where Λκ(k) is the weight function for the κ-th mel band and

N (lo)(κ) and N (up)(κ) are the lower and upper mel band bounds,

respectively. Substituting (4) into (6) yields

ym,κ = log
h

LH
X

m′=0

exm−m′,κ+hm′,κ + E(1)
m,κ + E(2)

m,κ

i

(7)

where

hm,κ = log
h

H
2
m,κ

i

(8)

with

H
2
m,κ =

1

N (up)(κ) − N (lo)(κ) + 1

N (up)
X

k=N (lo)(κ)

|Hm,k|
2

(9)

is an average representation of the RIR in the log mel spectral

domain. Further, xm,κ is the corresponding log mel spectrum

of the clean unreverberated signal. The terms

E(1)
m,κ =

LH
X

m′=0

Nu(κ)
X

k=NL(κ)

|X̃(m − m′, k)|2

×
“

|Hm′,k|
2 − H

2
m′,κ

”

Λκ(k) (10)

E(2)
m,κ =

LH
X

m′=0

LH
X

m′′=m′+1

Nu(κ)
X

k=NL(κ)

2ℜ
n

X̃(m − m′, k)

×X̃∗(m − m′′, k)Hm′,kH∗
m′′,k

o

Λκ(k) (11)

are interpreted as error terms. Here ℜ(·) denotes the real part.
In doing so, the observation model (7) depends only on the av-

eraged representation hm,κ, i.e. only coarse knowledge about

the RIR is required. The two error terms can be combined and

approximately modelled as block and mel band dependent zero

mean random variables. Defining the reverberant LMSC vector

by

ym = [ym,1, ..., ym,K ]T , (12)

K being the number of mel bands, (7) can be written as

ym = log
h

LH
X

m′=0

exm−m′+hm′

i

+ vm (13)

= f
“

x
m
m−LH

,h
LH
0

”

+ vm (14)

where vm is approximated to be an additive Gaussian noise vec-

tor with properly chosen second order characteristics. Here we

used the notation

x
m+n
m = [xm, ..., xm+n] . (15)

to denote a sequence of feature vectors.

2.2. Coarse modelling of the room impulse response

In unknown environments the room impulse response (RIR)

from the speaker to the microphone is obviously not available.

It is well known that the accurate estimation of the RIR is a

complicated task because of its time-variant character. For our

purposes it is however sufficient to employ the following coarse

model of the RIR

h̃(l) = σh · ũ(l) · ñ(l)e−
l
τ . (16)

Here ñ(l) denotes a realization of a zero mean white Gaussian

stochastic process with E[ñ2(l)] = 1 and u(l) is given by

ũ(l) =



1 : 0 ≤ l ≤ Lh

0 : else
. (17)

Further, σh is a scalar which is set to σh =
q

e−2/τ−1

e−2(Lh+1)/τ−1

to normalize the RIR to unit energy:

E

"

Lh
X

l=0

h̃2(l)

#

= 1. (18)

The scalar parameter τ determines the exponential decrease of

the envelope and is given by τ = T60/ (3 log(10) · Ts) where
Ts denotes the sampling duration and a frequency independent

reverberation time T60 is assumed [9].

The application of the model requires only the estimation

of T60 which can be e.g. carried out by a maximum likelihood

approach [10]. The normalization (18) necessitates the incom-

ing reverberant signal to be normalized to the same energy as

the nonreverberant one.

Assuming the RIR model (16) as a basis it is convenient to

assume a normal distribution for its log-mel spectral represen-

tation hm,κ. An estimate can be obtained by taking its mean

ĥm,κ = E[hm,κ] =
1

2
log

0

@

µ4(H2)

m,κ

σ2(H2)
m,κ + µ2(H2)

m,κ

1

A (19)

where µ
(H

2
)

m,κ and σ2(H2)

m,κ denote the mean and variance of the

log normal distributed random variable H
2
m,κ, respectively.

Note that µ
(H

2
)

m,κ and σ2(H2)

m,κ can be computed using (9) , (5),

(16) and (17). The estimates (19) are finally used in (13) to

replace the unknown hm′ .

2.3. Enhancement

We employ a Bayesian framework for the enhancement of re-

verberant speech features. The a priori probabilistic model, i.e.

the model of the dynamics of the clean non-reverberant log-mel

spectral speech feature vector xm is chosen to be a switching

linear dynamical model (SLDM) [11], which has previously

been successfully applied for noise robust speech recognition

[12]:

p (xm|xm−1, γm = i) = N (xm;Aixm−1 + bi,Ci) (20)

p (x1|γm = i) = N (x1; µi,Σi) . (21)



Here, N (·; µi,Σi) denotes a Gaussian density with mean

vector µi and covariance matrix Σi. The distribution (20)

corresponds to a probabilistic auto regressive (AR) model

of first order where the matrices Ai and offset vectors

bi describe the transition between successive feature vec-

tors. Further, γm is the hidden state variable which indi-

cates the valid state at time index m. The model parameters

Ai,bi,Ci, µi,Σi, i = 1, . . . , M , as well as the transition

probabilities aij = P (γm+1 = j|γm = i) can be learnt from

training data applying the well known EM algorithm [11]. Note

that by assuming Ai = 0 and aij = 1/M2 a Gaussian mixture

model (GMM) is obtained to model the clean speech distribu-

tion. However, we propose to employ a SLDM to take into

account the high correlation between adjacent feature vectors.

We propose here to estimate the clean nonreverberant

LMSC trajectory by approximation of the MMSE estimate

xm|m = E [xm|ym
1 ]. With the model conditioned expectations

of the clean nonreverberant LMSCs and their error covariance

matrices defined by

x
(i)

m|m = E [xm|ym
1 , γm = i] (22)

Σ
(i)
m|m = E

»

“

xm − x̂
(i)
m|m

”“

xm − x̂
(i)
m|m

”T

|ym
1 , γm = i

–

,

(23)

the estimates x̂
(i)
m|m and Σ̂

(i)

m|m can be iteratively computed by

a set of Kalman filters and then combined to the final estimates

x̂m|m =
M
X

i=1

x̂
(i)

m|m
P (γm = i|ym

1 ) (24)

Σ̂m|m =
M
X

i=1

P (γm = i|ym
1 )

×

»

Σ̂
(i)

m|m +
“

x̂m|m − x̂
(i)

m|m

”“

x̂m|m − x̂
(i)

m|m

”T
–

.

(25)

Because the observation model (13) is nonlinear we propose to

use iterative Extended Kalman Filters using 3 iterations per state

update. The Kalman Filters compute the predicted observation

ŷ
(i)
m|m−1 =f

„

x̂
(i)
m|m−1, x̂m−1|m−1, ..., x̂m−LH |m−LH

, ˆh
LH

0

«

(26)

with f(·) defined in (13). As the number of possible model

histories, i.e. sequences {γ1, ..., γm}, increases exponentially
with m, for the computation of (22) and (23) approximations

have to be used to keep the approach practical, e.g. the Gener-

alized Pseudo Bayesian approach of first (GPB1) or second or-

der (GPB2) or the Interacting Multiple Model (IMM) approach

[13].

2.4. Uncertainty Decoding

The advantage of the proposed feature enhancement approach

is that with the error covariance matrix Σ̂m|m a measure of

uncertainty is computed in parallel to the estimation of the

clean features. The utilization of this information for improv-

ing the recognition performance by changing the decoding rule

is known as uncertainty decoding (UD) [14].

Typical recognizers employ Hidden Markov Models

(HMMs) to model the production of the nonreverberant clean

feature vectors. As features we propose here to use MFCCs

x
(c)
m =

“

x
(c)
m,1, ..., x

(c)
m,Kc

”T

, Kc denoting the number of cep-

stral components, for recognition to benefit from a reduced di-

mension and nearly decorrelated feature vector components.

The enhanced MFCCs x̂
(c)
m as well as their error variances

σ
2(c)

m =
“

σ2(c)

m,1 , ..., σ2(c)

m,Kc

”T

are computed from the enhanced

LMSCs by

x̂
(c)
m = MDCT · x̂m|m (27)

σ
2(c)

m = diag
“

MDCT · Σ̂m|m · MT
DCT

”

, (28)

where MDCT is the Discrete Cosine Transform (DCT) matrix

and diag(·) denotes the operation of extracting the diagonal of

a matrix. The observation probability for the recognizer which

is dependent on the HMM state variable qm is modelled as a

GMM comprising J components

p
“

x
(c)
m |qm

”

=

J
X

j=1

cqm,j · N
“

x
(c)
m ; µ

(GMM)
qm,j , σ2(GMM)

qm,j

”

. (29)

where µ
(GMM)
q,j and σ

2(GMM)

q,j are the mean and variance vectors

of the GMM corresponding to the j-th mixture component and

state q. The variance information obtained by (28) can be em-

ployed to compute the density of the reverberant MFCCs y
(c)
m

by

p
“

y
(c)
m |qm

”

∝
J
X

j=1

c′qm,j

“

µ
(eq)
m ; µ

(GMM)
qm,j , σ2(GMM)

qm,j + σ
2(eq)

m

”

.

(30)

where the i-th component of the equivalent means µ
(eq)
m and

variances σ
2(eq)

m and the modified mixture weights c′q,j are given

by the following equations [14]

σ2(eq)

m,i =

»

“

σ2(c)

m,i

”−1

−
“

σ2(c,x)

i

”−1
–−1

(31)

µ
(eq)
m,i = σ2(eq)

m,i

 

x̂
(c)
m,i

σ2
m,i

−
µ

(c)
x,i

σ2(c,x)

i

!

(32)

c′q,j = cq,j

N
“

0; x̂
(c)
m,i, σ

2(c)

m,i

”

N
“

0; µ
(c,x)
i , σ2(c,x)

i

”

N
“

0; µ
(eq)
m,i, σ

2(eq)

m,i

” .

(33)

Here, µ
(cx)
i and σ2(c,x)

i denote the mean and variance of the

i-th cepstral component of a Gaussian prior p(x
(c)
m ) obtained

from the whole training data. It has been observed that the a

posteriori variances σ2
m,i can become too large as consequence

of poor estimation. Its value is therefore limited to 0.5σ2(c)

x,i .

This UD approach was also applied for the MFCC ∆- and ∆∆-

components whose estimates and error variances were com-

puted from (27) and (28).

3. Simulation results

The performance of the proposed feature enhancement algo-

rithm was evaluated on the noisefree reverberant utterances of

the AURORA 5 connected digits recognition task [15].



3.1. Model training

For the EM training of the SLDMs we used 8623 clean unre-

verberant utterances. The training procedure is well described

in [11]. The acoustic models of the recognizer consisted of

speaker independent word based HMMs with 16 states per word

and 4 Gaussian mixture components per state. Simple left-to-

right models without skips over states were used. The HTK

software was employed for the training of the HMM parame-

ters and Viterbi decoding for the recognition.

3.2. Baseline results

Apart from clean non-reverberant test utterances, the AU-

RORA5 database contains reverberant test utterances originat-

ing from the convolution of clean test utterances with randomly

generated RIRs for two conditions, office room and living room.

The reverberation time T60 is varied in the range from 0.3s to
0.4s for the office room and in the range from 0.4s to 0.5s for
the living room. For each condition there were 8700 test utter-

ances. The baseline recognition results using either the ETSI

SFE or advanced front end (AFE) are depicted in table 1. It

can be clearly seen that the recognition performance severely

degrades when the reverberation increases.

Table 1: Baseline word accuracies [%].

Front end Non-reverberant Office Living room

SFE 99.33 92.64 82.02

AFE 99.36 92.12 81.14

3.3. Results with proposed algorithm

The feature enhancement, i.e. dereverberation, was performed

in the log mel spectral domain as described in section 2.3.

We employed the SFE for the extraction of log mel spectral

feature vectors. To compute the log-mel spectral representa-

tion of the RIR (8) we used a fixed randomly generated im-

pulse response according to (16) with a reverberation time of

0.35s for the office and 0.45s for the living room condition.

The enhanced log mel spectral feature vetors were converted to

MFCCs (Kc = 13), which were successively used for recog-

nition together with their ∆- and ∆∆-components. We evalu-

ated the recognition performance depending on the number M
of SLDM models, the chosen inference algorithm (GPB1/2 or

IMM) and the ASR decoding algorithm (with or without un-

certainty decoding). The results for office and living room are

given in tables 2 and 3, respectively.

Table 2:Word accuracies [%] for office room (T60=0.3s-0.4s).

Algorithm M = 2 M = 4 M = 8 M = 16
GPB1 93.36 93.94 94.08 93.97

GPB1 + UD 94.99 95.50 95.46 95.02

IMM 94.17 94.63 94.85 94.56

IMM + UD 95.01 95.18 95.08 94.49

GPB2 94.28 94.84 95.19 -

GPB2 + UD 94.99 95.72 95.72 -

First of all, it can be observed that the recognition perfor-

mance is improved with the proposed approach. As expected,

the IMM approach gives better results for all considered num-

bers of models compared to GPB1, especially for the living

room condition. The GPB2 approach delivers even slightly bet-

ter results for all considered cases, however at the cost of sig-

nificantly increased computational effort. It can also be seen

Table 3:Word accuracies [%] for living room (T60=0.4s-0.5s).

Algorithm M = 2 M = 4 M = 8 M = 16
GPB1 84.63 83.14 82.67 83.79

GPB1 + UD 89.57 88.61 88.09 88.98

IMM 87.03 87.53 88.43 88.63

IMM + UD 90.57 90.04 90.36 90.07

GPB2 87.70 88.10 88.99 -

GPB2 + UD 91.00 90.67 91.11 -

that increasing the number of models only moderately improves

recognition results. By the application of the UD the recogni-

tion results can be further improved For the best configuration

the number of recognition errors is approximately reduced by a

factor of two.

4. Conclusions

In this paper we have presented a new observation model for re-

verberant feature vectors in the log mel spectral domain and ap-

plied it to feature enhancement. Simulation results showed that

the proposed approach delivers significantly improved recogni-

tion results compared to recognition of unprocessed reverberant

features for utterances of connected digits emitted in reverber-

ant environments.
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