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Abstract—In this paper we present a novel vehicle tracking
method which is based on multi-stage Kalman filtering of GPS
and IMU sensor data. After individual Kalman filtering of GPS
and IMU measurements the estimates of the orientation of the ve-
hicle are combined in an optimal manner to improve the robust-
ness towards drift errors. The tracking algorithm incorporates
the estimation of time-variant covariance parameters by using an
iterative block Expectation-Maximization algorithm to account
for time-variant driving conditions and measurement quality. The
proposed system is compared to an interacting multiple model
approach (IMM) and achieves improved localization accuracy
at lower computational complexity. Furthermore we show how
the joint parameter estimation and localizaiton can be conducted
with streaming input data to be able to track vehicles in a real
driving environment.

I. INTRODUCTION

In recent years there has been a lot of interest in the field

of car-to-car communication. Driver assistance systems can

help avoid accidents by making use of information about the

traffic and road. An important issue is the accurate localization

of the own vehicle to be able to exchange position information

with neighboring cars and to assess the relevance of received

messages.

Location information can be obtained from a Global Po-

sitioning System (GPS) device and an internal Inertial Mea-

surement Unit (IMU) consisting of e.g. a gyroscope and an

accelerometer [1]. These sensor data are fused employing a

model of vehicle movements to obtain an improved location

estimate. To account for different driving conditions a piece-

wise linear kinematic model has been proposed which consists

of switching between the ’constant velocity’ (CV), ’constant

acceleration’ (CA), and sometimes also the coordinated turn

model (CT) [2]. However, inference in such models, e.g. by

the Interacting Multiple Model (IMM) algorithm, is known to

be computationally demanding [7], certainly a drawback in

light of the desired real-time processing on resource-limited

devices.

As an alternative to this we explore here a time-variant sin-

gle model approach, where system and observation covariance

matrices are estimated alongside the tracking of the vehicle by

employing the Expectation-Maximization (EM) algorithm. By

updating these covariance parameters to account for different

driving conditions we avoid the need for multiple dynamical

models. In the Expectation step we employ a multi-stage (MS)

filter, which consists of separate state estimators for the GPS

and IMU data and an optimal estimator combination: Angle

estimates by an external GPS device and the internal gyroscope

are fused optimally taking into account their respective error

covariances. By this we avoid the complexity of a single

high-dimensional filter. In the Maximization step state and

observation covariances are reestimated. We also show how

the EM-algorithm is extended to achieve (quasi) online-ability

such that vehicle tracking with a time-variant kinematic model

is possible in a real driving environment. The experiments

conducted show that the MS approach achieves higher posi-

tioning accuracy at greatly reduced computational complexity

compared to the IMM and that the EM-based covariance

estimate further improves positioning accuracy slightly.

This paper is organized as follows. In the next section, we

give an overview of the equations governing the IMU unit.

Then we describe our multi-stage filtering approach and derive

the EM-algorithm for process noise and observation noise

covariance estimation. In section IV we show how the calcula-

tions in the proposed joint parameter estimation and tracking

system can be organized to achieve online vehicle tracking

with time-variant model parameters, while section V presents

simulation results. The paper finishes with conclusions drawn

in section VI.

II. INERTIAL MEASUREMENT UNIT

The quality of position estimates via GPS can be improved

by employing measurements from an inertial measurement

unit (IMU). In this paper we assume that the IMU consists

of a gyroscope and an accelerometer.

A gyroscope measures the coriolis acceleration caused by

angular rotation. It produces voltage outputs proportional to

the angular velocity of the vehicle around the principal axis

of the device. The second IMU device is the accelerometer,

which measures the linear acceleration of the vehicle in the

body frame along three orthogonal axes.

Usually the inertial measurement unit (IMU) provides mea-

surements of an accelerometer and a gyroscope at a much

higher rate than the GPS device. We assumed a sampling

period of ∆T2 = 1/100 sec., where the measurements of

the IMU are the accelerations ab and the angular velocities

ω
b with respect to the body frame. The orientation of the

device is represented by a vector of the three Euler angles

µ̃ = [γ, θ, ϕ]T , where ϕ is yaw and θ denotes pitch and γ the

roll angle. Disregarding the effect of earth rotation and gravity



for simplicity we obtain [1]

ṗ = v; v̇ = a = CCn
b ab; ˙̃µ = Πω

b, (1)

where Cn
b transforms data from navigation to body frame with

C
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(2)
and Π is the transformation matrix for the angular velocities

with

Π =

2

4

1 sin γ tan θ cos γ tan θ
0 cos γ − sin γ
0 sin γ/ cos θ cos γ/ cos θ

3

5 . (3)

The vector p contains the current vehicle position [x, y, z]
and matrix C transforms the data from the NED to the ENU

frame. The errors (drift and biases) of accelerometer ǫ
b
a =

[ǫb
ax

, ǫb
ay

, ǫb
az

]T and ǫ̇
b
a and of gyroscope ǫ

b
ω = [ǫb

ωx
, ǫb

ωy
, ǫb

ωz
]T

and ǫ̇
b
ω are modeled as deterministic processes with ǫ(t) =

Cǫ,2 + Cǫ,1(1 − exp(−t/Tǫ)), where Cǫ and Tǫ are assumed

to be time-variant parameters which are known [5]. The initial

conditions of the parametrized model are ǫ(0) = Cǫ,2 and

ǫ̇(0) = Cǫ,1/Tǫ. Further the IMU sensors are influenced by

quantization and scaling errors. We assume a quantization

error of 0.1 deg./sec. and a scaling error factor of 4 %.

III. EM-BASED COVARIANCE ESTIMATION

Let s1:N = s1, . . . , sN and z1:N = z1, . . . , zN denote the

state and observation vector sequence. The estimation of some

parameter θ with the EM algorithm is based on the iterative

optimization of the objective function

Q(θ, θ̂(l)) = E
[

log p(s1:N , z1:N ; θ)|θ̂(l), z1:N

]

, (4)

where l is the iteration index. The expectation can be written

Q(θ, θ̂(l)) = E
[

log p(z1:N |s1:N ; θ)|θ̂(l), z1:N

]

+ E
[

log p(s1:N ; θ)|θ̂(l), z1:N

]

. (5)

For the estimation of the observation noise covariance R only

the first term on the right hand side and for the estimation

of the process noise covariance Q only the second term on

the right hand side is relevant, as the other term is constant,

respectively:

R̂(l+1) = argmaxRE
[

log p(z1:N |s1:N ; θ)|θ̂(l), z1:N

]

(6)

Q̂(l+1) = argmaxQE
[

log p(s1:N ; θ)|θ̂(l), z1:N

]

(7)

In the following we show how the Expectation step, eq. (5),

and the Maximization step, eqs. (6) and (7) can be computed.

A. E-Step: Filtering with a Multi-Stage Kalman Filter

Fig. 1 gives an overview of the multi-stage Kalman filter,

where the estimates are labelled by ( ˆ ). The GPS position

measurements zGPS are assumed to be obtained every ∆T1 =
1 sec. with respect to the local ENU coordinate system:

zGPS
k1

= HsGPS
k1

+ wGPS
k1

, wGPS
k1

∼ N (0,RGPS
k1

). (8)

Here k1 is the time index which counts multiples of ∆T1.

sGPS = [x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈]T is the state vector of Kalman

Filter KF1 and wGPS
k1

denotes white Gaussian observation

noise with (time-variant) covariance RGPS
k1

. The composition

of the matrix H is obvious from the definition of state and

observation vectors. The state equation of KF1 is given by

sGPS
k1+1 = FGPSsGPS

k1
+ vGPS

k1
, vGPS

k1
∼ N (0,QGPS

k1
), (9)

where the block-diagonal matrix FGPS =
blkdiag(FCA,FCA,FCA) depends on the constant acceler-

ation (CA) state transition matrix FCA =
[

1 ∆T1 (∆T1)
2/2

0 1 ∆T1

0 0 1

]

and the covariance matrix QGPS
k1

of the white Gaussian

process noise.

Corresponding to eq. (1) we use an Unscented Kalman Filter

(UKF1) for the gyroscope measurements. The state vector is

sGyro = [µ̃T , ˙̃µT , (ǫb
ω)T , (ǫ̇b

ω)T ]T and the measurements are

the angular velocities.

A disadvantage of inertial navigation is the drift which

results in error accumulation. So, after transforming the filtered

GPS data to spherical coordinates via an unscented transform

(UT) (state vector sGPS → µ
GPS = [θGPS , ϕGPS ]T and

error covariance PGPS → PGPS
µ ), we combine pitch and yaw

of µ
GPS and the vector µ

Gyro of UKF1 in an optimal manner

to an estimate µ
EC = [θEC , ϕEC ]T (EC: estimator combina-

tion), using their respective estimation error covariances [3],

[6]:

(PEC
k1

)−1
µ

EC
k1

= (PGyro
µ,k1

)−1
µ

Gyro
k1

+ (PGPS
µ,k1

)−1
µ

GPS
k1

,

(PEC
k1

)−1 = (PGyro
µ,k1

)−1 + (PGPS
µ,k1

)−1. (10)

To improve robustness the result is fed back to the prediction

step of UKF1, where the Euler angles and the correspond-

ing error covariances are replaced correspondingly. With the

estimator combination of (10) we make the simplifying as-

sumption that the errors of KF1 and UKF1 are statistically

independent, which is actually not the case, due to the feed-

back of the EC result to UKF1.

Finally, another UKF (UKF2) is used to bring all, i.e.

the output of the combiner, the accelerometer and the

GPS measurements, together. The control input of UKF2

is u = [γGyro, (µEC)T ]T . The state vector is sAcc =
[x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈, (ǫb

a)T , (ǫ̇b
a)T ]T and the corresponding

state equation is

sAcc
k2+1 = FAccsAcc

k2
+ vAcc

k2
, vAcc

k2
∼ N (0,QAcc

k2
), (11)

where FAcc again includes the CA transition matrices depend-

ing on ∆T2, and vAcc
k2

is a zero mean white Gaussian noise

of covariance QAcc
k2

.

At times when no GPS measurements are available, only

the accelerations in body frame with zAcc
k2

= (zb
a)k2

are used

for updating. When a new GPS measurement arrives the mea-

surement vector is augmented to zAcc
k2

= [(zb
a)T , (zGPS)T ]Tk2

:

zAcc
k2

= hAcc(Cn
b (uk2

), sAcc
k2

) + wAcc
k2

, wAcc
k2

∼ N (0,RAcc
k2

),
(12)
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Fig. 1. Multi-stage Kalman filter architecture (solid lines) with extensions for parameter estimation (dotted lines).

where hAcc(Cn
b (uk2

), sAcc
k2

) denotes the coupling between

Euler angles and state vector variables and the measured

accelerations in body frame. Some entries of the measurement

covariance of UKF2 RAcc
k2

are the same as those of covariance

RGPS
k1

of KF1 and are therefore calculated only once in the

E-step.

State estimates of each filter stage f ∈ {GPS, Gyro, Acc}
can be further improved by backward smoothing over a block

of the last N values with the ’Rauch-Tung-Striebel’ (RTS)

algorithm [7]:

s
f
k|N = s

f
k|k + Λ

f
k(sf

k+1|N − s
f
k+1|k), (13)

P
f
k|N = P

f
k|k + Λ

f
k(Pf

k+1|N − P
f
k+1|k)(Λf

k)T , (14)

where Λ
f
k = P

f
k|k(Ff

k)T (Pf
k+1|k)−1 is the smoother gain.

B. M-Step: Covariance Estimation

As the precision of the GPS measurements are time-variant

due to the changing satellite constellation and changing radio

propagation characteristics, and as the vehicle kinematics de-

pend on the driving conditions, the covariance matrices of both

measurement and process noise of all filters are reestimated to

account for these changes. To allow for later online processing

the input data are segmented into blocks of N samples, where

N has to be chosen as a trade-off between reliable parameter

estimation and low latency. Within each block the covariances

can be reestimated using the results (13), (14) of the E-step [4]:

Q̂f =
1

N

∑

k

(sf
k|N − Ffs

f
k−1|N )(sf

k|N − Ffs
f
k−1|N )T

+
[

P
f
k|N + FfP

f
k−1|N (Ff )T − P

f
k,k−1|N (Ff )T

−
(

P
f
k,k−1|N )(Ff )T

)T ]

(15)

The use of an unscented transform can increase the perfor-

mance compared to an analytical linearization. Instead of cal-

culating the Jacobians of hf (s)|s=sk|N
, we apply the unscented

transform to get the estimate H̃
f
k = E[hf (∆s

f
k)(hf (∆s

f
k))T ],

where ∆s
f
k = s

f
k − s

f
k|N and hf (∆s

f
k) denoting the nonlin-

earity between the state and observation vector. This results

in the observation covariance estimate

R̂f ≈
1

N

∑

k

(zf
k − hf (sf

k|N ))(zf
k − hf (sf

k|N ))T + H̃
f
k. (16)

A typical block size would be to estimate RGPS
k1

over the

last 30-40 sec. and the other covariance matrices every 2-6 sec.

IV. ON-LINE TV APPROACH

As the E-step involves the backward RTS-smoothing, which

indeed is important to obtain good parameter estimates, we

propose the following ’on-line’ version of the above time-

variant multi-stage Kalman filter (denoted TV-MS in the

following), see also Fig. 2:

1) Forward filtering of data in block w using the currently

available parameter estimates (E-step).

2) RTS-smoothing of the filter output of block w − 1 (E-

step): eqs. (13), (14).

3) Parameter estimation using the smoothed data of block

w − 1 (M-step): eqs. (15), (16).

4) If at least one of the following conditions is met:

• Convergence of the log-likelihood,

• Forward filtering of block w is finished,

• Maximum no. of iterations is reached,

then abort parameter estimation and goto 6. Else goto 5.

5) Forward filtering of the signals in block w−1 using the

parameter estimates of step 3 and goto step 2.

6) Advance block index (w := w + 1) and goto step 1,

using the parameter estimates of step 3.

w − 2 w − 1 w w + 1

Filtering
+

RTS (2-5)

Forward filtering (1)

Parameter transfer (6)

Fig. 2. Illustration of on-line TV-MS.

It should be pointed out, that usually the filtering and param-

eter estimation in steps 2, 3 and 5 is much faster than step 1,

because all data of block w − 1 are already cached.

V. EXPERIMENTAL RESULTS

A. Covariance Estimation

Fig. 3 shows the variance of the GPS position measurement

in east direction. At time t = 120 sec. we simulate a



rapid change of signal quality by reducing the variance from

σ2
e = 40 to σ2

e = 20. The red (dashed) curve displays the

estimate obtained from applying the proposed EM algorithm

to reestimate the observation covariance matrix of KF1. The

plot shows that the change in the variance is tracked very well,

although only the observations of the last 40 sec. were used for

estimation and although the initial value of σ2
e(0) = 32 was

chosen poorly. Fig. 4 shows how the measurement covariance
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Fig. 3. Measurement covariance of position (east-direction).
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Fig. 4. Measurement covariance of acceleration.

of the first acceleration component of UKF2 is tracked. Here,

we also assume a wrong initialization value, which does not

seem to matter, as it is corrected very fast by reestimation.

B. Localization Performance

In order to study the localization performance vehicle

trajectories were generated with a piecewise linear kinematic

model, where the switching between the two models CV and

CA was done according to the transition probability matrix

Σ =

„

0.9168 0.0832
0.2328 0.7672

«

. These values of Σ had been trained

on real driving data.

Time-varying observation and process noise covariances

were employed in the data generation, where variances were

drawn from a normal distribution whose standard deviation

was 0.4 times the mean. For example, the GPS position

measurements were generated by adding to the true position

value observation noise, whose RMS value was drawn from

a normal density with mean 35 m and standard deviation

0.4 · 35 m, limited to positive values.

Fig. 5 compares the true value of the yaw angle ϕ (black)

with the estimated yaw angle computed by the unscented

transform following the GPS filter KF1 (blue) and the fil-

tered gyroscope data at the output of UKF1 without EC and

feedback to its prediction step (green). While the filters were

initialized with the true value, the drift of the gyroscope as

described in section II can be clearly seen. Although the GPS
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Fig. 5. Effect of estimator combination.

measurements seem to be not so good, their combination with

the UKF1 output in the EC module and the feedback of the

output to UKF1 delivers estimates at the EC output of higher

quality (red). The reason is the weighting of the individual

estimates by their error covariance matrices, which accounts

for the estimator quality in an optimal way.

Fig. 6 shows the cumulative density functions (CDF) of the

position estimates of different filtering approaches, where all

approaches assumed constant observation and process noise

covariances, which had been set to the average value of

those underlying the data generation. As can be seen, a

GPS Kalman filter or a dead reckoning using GPS data as

nodes alone perform very poorly, while the MS Kalman filter

achieves slightly better results than the IMM. Note that for the

results given here the MS approach did not include the RTS

smoothing, as this is only used for parameter estimation. As a

kind of performance upper bound results are given for an IMM

which incorporates backward filtering and smoothing between

forward and backward estimates on the complete trajectory

of length 500 sec. (batch IMM). This offline batch method is

of course not applicable for online processing in a real car

environment as it is unable to deliver instantaneous position

estimates.

In Fig. 7 we look at joint parameter estimation and tracking.

It can be seen that the GPS and DR approaches benefit greatly

from using time-variant (TV) covariance estimates delivered

by the EM algorithm, while the IMM methods even degrade

compared to using fixed values as in Fig. 6. The reason for

the latter is probably that due to the high dimension of the

state (27) and observation vector (9) in the IMM there are

too many covariance parameters which cannot be estimated
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reliably. The time-variant MS approach is slightly better than

the time-invariant MS method (see Fig. 6), and its resulting

positioning accuracy almost reaches that of the batch TV-IMM

algorithm.
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Fig. 7. Cumulative density functions for joint covariance parameter estima-
tion and tracking.

C. Complexity

Although the multi-stage Kalman filtering approach seems

to be computationally complex, its complexity is significantly

lower than that of the IMM filter. Table I shows the mean

elapsed times of the different processing steps in the two

filtering approaches for processing a block of 10 sec. of

measurement data. The simulations had been carried out with

MatlabTM R2008 on a 2.33 GHz Quad-Core Xeon Processor

with 4 GB RAM.

The IMM state vector is of size (27 × 1) and contains

[pT ,vT ,aT , µ̃T , ˙̃µT , (ǫb
a)T , (ǫ̇b

a)T , (ǫb
ω)T , (ǫ̇b

ω)T ]T , while the

three state estimators of the MS filter have state vector dimen-

sions of 9 (KF1), 12 (UKF1) and 15 (UKF2), respectively.

Data block of 10 sec. TV-IMM TV-MS

Forward filtering 15.5 sec. 6.5 sec.

Backward filtering + Smoothing 23.8 sec. -

RTS - 0.63 sec.

Covariance estimation 5.8 sec. 0.1 sec.

TABLE I
RUNTIMES OF MS AND IMM STAGES.

The table indicates that the forward filtering step of the

IMM has a real-time factor of 1.5, while the backward filtering

and smoothing asks for even 2.4 times real-time. On the

other hand, the MS approach is well feasibly in real-time.

The forward filtering requires about 6.5 sec., while the RTS-

algorithm is much faster than the multiple-model backward

filtering and smoothing of the IMM. Also the covariance

estimation is much faster.

The higher elapsed time for the IMM is in part due to the

higher dimension of the state vector. Compared to the other

filter equations the calculations of the matrix inversions inside

the Kalman filters are the computationally most expensive

steps, as the complexity of an inversion is of order O(D3),
where (D × D) is the matrix dimension. Due to the smaller

state dimensions of the MS method, these calculations can be

done much faster than one inversion of a matrix of higher

dimension (IMM). Note, that the EC requires one inversion,

too. But this is only done, when a GPS measurement is

available, see eq. (10).

Further, the backward filtering within the IMM algorithm is

complex, as it needs a second Extended Kalman filter while the

RTS of the MS approach is realized simply by eqs. (13), (14).

The smoothing steps of the IMM are of higher complexity, too,

because for each time step the state probabilities of all models

have to renewed (Gaussian mixture densities are approximated

by a single normal density).

VI. CONCLUSIONS

In this paper, a sensor fusion algorithm based on a multi-

stage Kalman filtering combined with online parameter rees-

timation for a robust vehicle localization is proposed. While

individual filters for GPS only or in combination with DR

perform poorly, the proposed scheme turned out to be very

effective. Even the IMM approach, which is of much higher

computational complexity, provides worse estimation results.

Further it is shown that the time-variant covariance matrices

can be tracked with the block-wise EM algorithm, although

there is a short latency. In future research we will investigate

the use of this localization approach in the context of a car-

to-car communication scenario.
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