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Abstract. In distributed and network speech recognition the actual recognition task is not 
carried out on the user’s terminal but rather on a remote server in the network. While there are 
good reasons for doing so, a disadvantage of this client-server architecture is clearly that the 
communication medium may introduce errors, which then impairs speech recognition accu-
racy. Even sophisticated channel coding cannot completely prevent the occurrence of residual 
bit errors in the case of temporarily adverse channel conditions, and in packet-oriented trans-
mission packets of data may arrive too late for the given real-time constraints and have to be 
declared lost. The goal of error concealment is to reduce the detrimental effect that such errors 
may induce on the recipient of the transmitted speech signal by exploiting residual redundancy 
in the bit stream at the source coder output. In classical speech transmission a human is the 
recipient, and erroneous data are reconstructed so as to reduce the subjectively annoying effect 
of corrupted bits or lost packets. Here, however, a statistical classifier is at the receiving end, 
which can benefit from knowledge about the quality of the reconstruction. In this book chapter 
we show how the classical Bayesian decision rule needs to be modified to account for uncer-
tain features, and illustrate how the required feature posterior density can be estimated in the 
case of distributed speech recognition. Some other techniques for error concealment can be 
related to this approach. Experimental results are given for both a small and a medium vocabu-
lary recognition task and both for a channel exhibiting bit errors and a packet erasure channel. 

9.1 Introduction 

In a client-server speech recognition system the client, e.g. a cellular phone, captures 
the speech signal, codes it and sends it via a digital communication link to the remote 
recognition server. At the server side, the received signal is decoded and forwarded 
to the speech recognition engine, which outputs the decoded word string. Depending 
on the type of data transmitted, one distinguishes between distributed (DSR) and 
network speech recognition (NSR). In DSR speech recognition features, such as 
Mel-Frequency Cepstral Coefficients (MFCC), are computed, coded and transmitted 
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(Pearce 2000), while in NSR a typical speech codec, such as the adaptive multi-rate 
(AMR) codec is employed (Fingscheidt, Aalburg, Stan and Beaugeant 2002). 

Compared to a realization of the recognizer on the client, the client-server archi-
tecture has many obvious advantages, such as ease of maintainability of the applica-
tion data on the server and avoidance of resource-intensive tasks on the client. How-
ever, the price to pay is an additional processing delay due to transmission and the 
potential corruption of the digitized speech data due to channel-induced errors. Here 
we are concerned with the latter and show how error concealment techniques help 
mitigate the negative effects of transmission errors on the speech recognition accu-
racy.  

Two channel models exhibiting different error types are considered in the follow-
ing: a channel characterized by bit errors and a packet erasure channel. Channel 
degradations at the bit level are for example typical of cellular circuit-switched 
transmission, where noise, multi-path fading and interference from neighboring 
stations are frequent error causes. Packet loss is a typical phenomenon of packet-
based transmission of data with real-time constraints over the internet. The combina-
tion of both error types is an approximate model for communications over a wireless 
packet network, or communications that involve both a wireless and a (packet-based) 
wireline link (Lahouti and Khandani 2007). 

To mitigate transmission errors researchers have proposed several different ap-
proaches. One category is comprised of methods that perform error or packet-loss 
concealment techniques at the receiving end. Another class of techniques requires 
certain coordination with the transmitter side, e.g. forward error correction or diver-
sity schemes based on multiple description coding. A third category requires a cer-
tain degree of support from the network, such as using packets with different priori-
ties. The schemes rely on the network to drop the packets with low priority during 
congestion periods. Currently, this support, however, may only be available in pro-
prietary networks and in the next generation of the Internet Protocol (IPv6) (RFC 
2460, 1998).  

In this contribution we restrict ourselves to purely receiver (server) based tech-
niques which leave the transmitter (client) side untouched, since they have the strik-
ing advantage that they are fully compatible with the current European Telecommu-
nications Standards Institute (ETSI) standards for distributed speech recognition 
(ETSI 2002; ETSI 2003a) and can be readily applied in current networks. Actually, 
the frame repetition scheme proposed in the ETSI standard is an example of such an 
error concealment method. 

The term error concealment denotes techniques which aim to reduce or even 
eliminate the effect of uncorrected transmission errors on the quality as perceived by 
the consumer of the transmitted data. For data transmission with no latency con-
straints a virtually error-free transmission can be achieved by a combination of for-
ward and backward error correction. This no longer holds for speech, audio or video 
transmissions, which typically have to adhere to real-time constraints.  

The detrimental effect of transmission errors can be concealed by exploiting re-
sidual redundancy still present at the output of the (in the Shannon sense) imperfect 
source coder. One might argue that, since low-bit rate source coding has been an 
issue since the early days of digital speech transmission, it is unlikely to find enough 
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residual redundancy in the output bit stream of the speech coder to be exploited for 
error concealment. But even for the low-rate codes used in GSM successful error 
concealment based on exploiting the non-uniform bit pattern probabilities and the 
correlation between successive frames has been demonstrated (Fingscheidt and Vary 
2001, Lahouti et al. 2007). 

Error concealment has been studied extensively in the field of mobile communi-
cations and, more recently, for voice or other real-time data transmission over the 
internet protocol (IP). In cellular systems standards such as GSM error concealment 
algorithms are proposed as non-mandatory recommendations (GSM 1992), and very 
sophisticated techniques have been developed in recent years (Vary and Martin 
2006). In Voice-over-IP packet loss is a frequent phenomenon, which is addressed, 
among others, by replacing the missing segments of speech with estimates con-
structed form previous or future available speech segments. For example, a wave-
form substitution algorithm based on pitch detection has been proposed for G.711 
pulse code modulation speech coding standard (ITU-T Recommendation G.711 
1999). Packet loss concealment methods for code excited linear prediction (CELP)-
based coders often replace the missing parameters with the corresponding parameters 
of the previous frame (Cox, Kleijn and Kroon 1989) and use scaled-down gains. 
Methods that interpolate between previous and future frames can also be employed. 

Similar techniques have been proposed for distributed speech recognition (DSR), 
where speech recognition related parameters, such as MFCCs (Davis and Mermel-
stein 1980) are computed in the user’s terminal and then transmitted to the remote 
speech recognition engine (Tan, Dalsgaard and Lindberg 2005). Feature reconstruc-
tion techniques range from quite simple methods such as substitution (with silence, 
noise or source-data), repetition or interpolation (Boulis, Ostendorf, Riskin, and 
Otterson 2002; Milner and Semnani 2000) to more elaborated schemes, such as repe-
tition on a subvector level (Tan, Dalsgaard and Lindberg 2004) and minimum mean 
square error (MMSE)-based reconstruction which models inter-frame correlation by 
a first-order Markov model (Peinado, Sanchez, Perez-Cordoba, and de la Torre 2003; 
James, Gomez and Milner 2004; Haeb-Umbach and Ion 2004). However, in DSR we 
can do even considerably more. 

In a DSR scenario we would like to alleviate the effect that transmission errors 
have on the consumer of the data, the automatic speech recognition (ASR) decoder. 
Unlike a human recipient, the recognizer not only benefits from a good reconstruc-
tion of lost or corrupted data but also from knowledge about the quality of the recon-
struction. The ASR decoder is then modified such that features deemed unreliable 
are deemphasized (Bernard and Alwan 2001; Bernard and Alwan 2002) or com-
pletely excluded from consideration in the recognizer (Weerackody, Reichl and 
Potamianos 2002; Endo, Kuroiwa and Nakamura 2003). However, it is not an easy 
task to identify corrupt features or even quantify the degree of corruption, at least on 
a channel exhibiting bit errors. While in (Haeb-Umbach et al. 2004) the availability 
of a soft-output channel decoder was assumed, in (Ion and Haeb-Umbach 2005) a 
technique was proposed which estimates bit error probabilities based on a priori 
knowledge of plausible bit patterns. 

Actually, the close connection between feature reconstruction and modification 
of the decoding engine becomes apparent once the problem of speech recognition in 
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the presence of unreliable feature vectors is cast in a Bayesian framework. Here, 
results form noisy speech recognition can be borrowed, where so-called Uncertainty 
Decoding has been investigated already for a couple of years (Morris, Cooke and 
Green 1998; Morris, Barker and Bourlard 2001; Arrowood and Clements 2002; 
Droppo, Acero and Deng 2002; Kristjansson and Frey 2002). Let the speech be cor-
rupted by additive noise or by transmission errors, in either case the original clean or 
uncorrupted speech feature vector is not observable, but rather a distorted version of 
it. Traditionally, the goal of speech feature enhancement is to obtain a point estimate 
of the clean speech feature, such as the MMSE estimate. This estimate is then 
“plugged into” the Bayes decision rule and used in the ASR decoder as if it were the 
true clean speech feature.  

However, one can do better if one takes the reliability of the estimate into ac-
count. In one formulation of uncertainty decoding the probability density function of 
the corrupted speech feature vector, conditioned on the unobservable clean speech 
feature vector, is computed and averaged over the observation probability of the 
clean speech (Liao and Gales 2004). In another formulation the front-end delivers 
uncertain observations, expressed as a posteriori density of the clean speech feature 
vector, given the observed noisy vector. It is well known, that the mean of the poste-
rior is exactly the MMSE estimate. Its variance is a measure of the uncertainty about 
this estimate. In the case of jointly Gaussian random variables, it is even equal to the 
variance of the estimation error. This frame-level uncertainty can be incorporated in 
the decoding process by using a modified Bayesian decision rule, where integration 
over the uncertainty in the feature space is carried out. Under certain assumptions 
this can be accomplished by a simple modification of the means and variances of the 
observation probabilities.  

In the context of distributed speech recognition the concept of uncertainty decod-
ing has been proposed for the first time in (Haeb-Umbach et al. 2004). Here, inter-
frame correlation has been identified as a major knowledge source which helps in 
reconstructing lost or corrupted features.  

This book chapter is organized as follows. In the following section we present the 
probabilistic framework of speech recognition in the presence of corrupted observa-
tions. In section 9.3 this concept is applied to distributed speech recognition, where 
we consider channels characterized by either bit errors or packet loss. Experimental 
results, both for a small and a medium vocabulary recognition task, are given in 
section 9.4, followed by some conclusions drawn in section 9.5. 

9.2 Speech Recognition in the Presence of Corrupted Features 

9.2.1 Modified Observation Probability 

The Bayesian decision rule is at the heart of statistical speech recognition. Given the 
sequence of T (uncorrupted) feature vectors ( )T

T xx ,,11 K=x  extracted from an utter-

ance, the goal is to find the sequence of words Ŵ  from of a given vocabulary, 
which maximizes the probability ( )TP 1| xW . Using the Bayesian theorem for condi-
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tional probabilities this can be expressed more conveniently as maximizing the prod-
uct between observation probability ( )Wx |1

Tp  and word sequence probability 
( )WP : 

( ) ( ){ }WWxW
W

Pp T ⋅= |maxargˆ
1 . (1) 

Introducing the hidden state sequence ),...,,( 211 T
T ssss =  we obtain 

( ) ( ) ( ) ( )∑∑ ==
TT s

TTT

s

TTT sPspspp
11

111111 ||,| xWxWx , (2) 

where the sum is over all state sequences within W . As there is exactly one word 
sequence corresponding to a state sequence, the condition on W  can be left out. 

A common assumption employed in speech recognition is the so-called condi-
tional independence assumption , which states that tx  is conditionally independent 
of neighboring feature vectors, given the HMM state ts : 

( ) ( ) ( )∏∏
==

− ==
T

t
tt

T

t
t

t
t

TT spspsp
11

1
111 |,|| xxxx . 

(3) 

Using this in Eq. 2 we obtain 

( ) ( ) ( )∑∏
=

=
Ts

T
T

t
tt

T sPspp
1

1
1

1 || xWx , 
(4) 

Often we are unable to observe the uncorrupted feature vector sequence T
1x . We 

observe a corrupted sequence ( )T
T yyy ,...11 = , which may differ from T

1x . In DSR, 
transmission errors are the reason for this difference. The speech recognition prob-
lem thus amounts to solving 

( ) ( ){ }WWyW
W

Pp T ⋅= |maxargˆ
1 . (5) 

 In solving this we need to find an efficient way to compute ( )TT sp 11 |y . To this 
end we introduce the (hidden) uncorrupted feature sequence: 

( ) ( ) ( )∫=
T

TTTTTTT dsppsp
1

1111111 |||
x

xxxyy  (6) 

Using Eq. 3 and noting that 

( ) ( )∏
=

=
T

t
tt

TT pp
1

11 || xyxy  
(7) 

we obtain 
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( ) ( ) ( ) ( ) ( )∏∫∫∏
==

==
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t
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11
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i.e. it is possible to interchange the product and the integral since the terms inside the 
integral only depend on t. 

Often it is more convenient to express ( )ttp xy |  via a posterior probability 

( ) ( ) ( )
( )t

ttt
tt p

ppp
x

yyxxy || =  
(9) 

If inter-frame correlation among the feature vector sequence is to be taken into 
account, ( )ttp yx |  has to be replaced by ( )T

tp 1| yx , i.e. the a posteriori density of 
the clean feature sequence, given all observed corrupted features. This posterior is, 
from an estimation theory point of view, the complete solution to the problem of 
estimating the clean feature vector, given all observations. In section 9.3 we will 
show how this posterior can be efficiently estimated in a distributed speech recogni-
tion scenario. 

Since we are eventually only interested in the word (state) sequence which 
maximizes Eq. 8, the probability of the noisy features ( )tp y  can be disregarded. 

Further, replacing ( )ttp yx |  by ( )T
tp 1| yx  in Eq. 9  and using it in Eq. 8 we arrive at 

( ) ( )
( ) ( )∏∫

=

=
T

t
ttt

t
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(10) 

Replacing ( )TT sp 11 |x  by ( )TT sp 11 |y  in Eq. 2 and using Eq. 10 we finally arrive at 

( ) ( )
( ) ( ) ( )∑∏∫ ⋅=

=T
ts

T
T

t
ttt

t

T
tT sPdsp

p
pp

1

1
1

1
1 |||

x

xx
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(11) 

The only difference to the standard ASR decoder is that the observation probability 
( )tt sp |x  has to be replaced by the modified observation probability: 

( ) ( )
( ) ( )∫→

t

ttt
t

T
t

tt dsp
p

psp
x

xx
x

yxx ||| 1 . 
(12) 

It is instructive to consider the extreme cases of an error-free transmission and a 
completely unreliable transmission. In case of an error-free transmission there is 

tt xy = , and the a posteriori density ( )T
tp 1| yx  reduces to a Dirac delta-impulse. As 

a result, the modified observation probability, Eq. 12, reduces to the standard obser-
vation probability (the denominator is then a constant and can be neglected as it does 
not influence the maximization in Eq. 5). 

In the other extreme case the channel does not transmit any information, which 
can be expressed by ( ) ( )t

T
t pp xyx =1|  for all Tt ,...,1= . In this case the modified 
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observation probability evaluates to one and Eq. 5 reduces to ( ){ }WW
W

pmaxargˆ = . 

As the observed features are uninformative, the recognizer has to rely solely on the 
prior word probabilities.  

The key element of the novel decoding rule is the posterior density ( )T
tp 1| yx . 

The processing of the corrupted features in front of the recognizer has to produce a 
posterior density instead of a point estimate. It is well-known from estimation theory, 
that the posterior density comprises all information about the parameter to be esti-
mated, here tx , that is available from the observations, here T

1y . Optimal point esti-
mates, such as MMSE or maximum a posteriori (MAP) can be obtained as the mean 
or mode of this density. Further, the (co)variance of the posterior is a measure of 
reliability of the point estimate. For this reason the posterior has sometimes been 
called soft feature (Haeb-Umbach et al. 2004). 

Related decoding rules can be found e.g. in (Morris et al. 1998; Morris et al. 
2001; Arrowood et al. 2002; Droppo et al. 2002; Kristjansson et al. 2002; Liao et al. 
2004). However, in most cases past and future observed feature vectors are not taken 
into account for the estimation of the posterior density of the current uncorrupted 
feature vector, i.e. ( )T

tp 1| yx  is replaced by ( )ttp yx | . In doing so inter-frame corre-
lation is neglected for the posterior estimation. In section 9.3, however, we will show 
that inter-frame correlation is a powerful knowledge source to be utilized for trans-
mission error-robust speech recognition.  

9.2.2 Gaussian Approximation 

Still, the modified observation probability given in Eq. 12 looks intimidating. The 
computation of the observation probabilities is the single most time consuming proc-
essing step in speech recognition. Replacing the evaluation of a mixture density by 
the numerical evaluation of an integral may increase the computational burden be-
yond the limits of practical interest. Fortunately, the integral can be solved analyti-
cally, if we make the following assumptions: 

1. The observation probability is a Gaussian mixture density: 

( ) ( )msmst

M

m
mstt Ncsp ,,

1
, ,;| Σµxx ∑

=

=  
(13) 

2. The a priori density of the uncorrupted feature vector can be modeled by a 
Gaussian density: 

( ) ( )xx Σµxx ,;tt Νp =  (14) 

3. The a posteriori density of the uncorrupted feature vector, given the se-
quence of received feature vectors, can be approximated by a Gaussian den-
sity: 

( ) ( ) ( )yxyx Σµxyxyx ||11 ,;||
ttt

T
tN

T
t Νpp =≈  (15) 
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Further we assume that all Gaussians, Eqs. 13 - 15, have diagonal covariance ma-

trices. Since the individual elements of a diagonal-covariance Gaussian are inde-
pendent, the densities can then be factorized over the feature vector elements. Let 

xms µµ ,,  and y|txµ  denote the means and 22
, , xmx σσ  and 2

|ytxσ  the corresponding vari-
ances of the Gaussians of an individual vector component of the observation, prior 
and posterior density, respectively. Then the integral present in Eq. 12 can be solved 
analytically (Droppo et al. 2002; Ion and Haeb-Umbach 2006c), where for each 
dimension we obtain the following: 

( ) ( )
( ) ( )∑∫∑
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m
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m
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σ
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=

−=
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(17) 

if 2
|

2
ytxx σσ > . Eq. 16 states that the variance of the original observation probability of 

the uncorrupted features is to be increased by 2
eσ  and that it is to be evaluated at eµ  

and weighted by A. 
The assumption of Eq. 13 is the standard model for observation probabilities. 

Further, the prior density of the feature vector ( )tp x  can be reasonably well ap-
proximated by a Gaussian density. The most critical assumption seems to be Eq. 15. 
We often observed a multi-modal shape of the posterior density. However, the Gaus-
sian approximation was adopted due to computational complexity reasons. 

9.3 Feature Posterior Estimation in a DSR Framework 

The decoding rule derived in the last section requires knowledge of ( )T
tp 1| yx , 

the a posteriori density of the transmitted feature vector, given all received feature 
vectors. In this section we show how this term can be estimated in the case of dis-
tributed speech recognition, where coded MFCCs are transmitted over an error-prone 
channel. We first describe the ETSI DSR standard to the extent necessary for under-
standing the subsequent derivation. Subsection 9.3.2 quantifies the redundancy pre-
sent in the output bit stream of the source coder. The two channel models under 
consideration are explained in subsection 9.3.3, and 9.3.4 shows how the feature 
posterior density can be computed from a priori and “transmission probabilities”. 
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This section is concluded by relating other approaches for error concealment to the 
one presented here. 

9.3.1 ETSI DSR Standards 

The ETSI distributed speech recognition standards define two feature extraction 
schemes, standard front end and advanced front end processing, together with the 
source coding, packet construction, and the backend source decoding scheme (ETSI 
2002; ETSI 2003a). For the purpose of error concealment we need to consider the 
source coder in more detail. 

A source coder is a mapping of the N-dimensional Euclidian space into a finite 
index set J of M2  elements. It consists of two components: the quantizer and the 
index generator. The quantizer maps the N-dimensional parameter vector x  to a N-
dimensional codeword (centroid) c in the finite codebook C. This codeword repre-
sents all vectors falling in this quantization cell. The index generator then maps this 
codeword c  to an index (bit pattern) b in an index set J. 

The source coder of the ETSI DSR standard employs a split vector quantizer 
(VQ) for the quantization of the static MFCC parameters. The input to the quantizer 
is the 14=N  dimensional parameter vector, consisting of the thirteen-dimensional 
MFCC feature vector and as a fourteenth component the logarithmic frame energy 
( Elog ). The parameter vector is split into seven subvectors, each of dimension two, 
which are quantized with bit-rates (6,6,6,6,6,5,8) bits, respectively. Including one bit 
for voice-activity information this sums to 44 bits per frame. Before transmission 
two quantized frames are grouped together creating a frame pair. A 4-bit cyclic re-
dundancy check (CRC) is calculated for each frame pair, resulting in a total of 92 
bits per frame pair.  

In our notation we will not distinguish between individual subvectors in the fol-
lowing, since the same operations are performed for all subvectors. We even do not 
make a distinction between the complete vector and any of the subvectors in our 
notation. Which interpretation is used should become clear from the context. 

9.3.2 Source Coder Redundancy 

The key to error concealment is the exploit the residual redundancy present in the 
source coder output bit stream. Let tx  denote any of the real-valued MFCC subvec-
tors at time frame t produced by the front-end. The source coder quantizes the sub-
vector to a codeword tc  and maps the codeword to a bit pattern 

( )1(),...0( −= Mbb tttb  of M bits, which is transmitted over an equivalent discrete-
time channel.  

Table 9.1 gives the entropies ( )tbH  and mutual information ( )1; −ttI bb  of the in-
dividual subvectors. The values have been obtained on the training set of the Aurora 
2 database (Hirsch and Pearce 2000) using the ETSI advanced feature extraction 
front-end. Here, subvector 1 denotes the bit pattern corresponding to the first and 
second mel-frequency cepstral coefficient, subvector 2 the third and fourth, and so 
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on. Subvector 7 comprises the zero-th cepstral coefficient and Elog . M is the num-
ber of bits used to code a subvector, i.e. the length of the bit pattern tb . Comparing 
M with the entropy  ( )tbH  of the bit pattern, one can observe that for all subvectors 
the two values are fairly close to each other. This indicates that the bit pattern has 
almost a uniform distribution. Not much redundancy is left within a subvector which 
could be utilized for error concealment. 

Table 9.1. Entropies and mutual information among the subvectors produced by the ETSI 
advanced DSR front-end (measured on Aurora 2 training database). 

Subvector 1 2 3 4 5 6 7 
M 6 6 6 6 6 5 8 
( )tbH  5.8 5.8 5.8 5.8 5.8 4.8 7.7 
( )1; −ttI bb  2.6 2.1 1.6 1.4 1.2 1.0 3.4 

( )( )1
2

11 ,,; −−− ∆∆ ttttI bbbb  3.0 2.4 1.9 1.7 1.5 1.3 4.5 

 
The mutual information ( )1; −ttI bb  indicates how much information about the 

current bit pattern tb  is already present in the previous 1−tb . The larger the mutual 
information the better a bit pattern following in time can be predicted from the one of 
the previous frame. Obviously, strong inter-frame correlation exists.  

The last line of the table gives the mutual information between the current bit 
pattern and the bit pattern ( )1

2
11 ,, −−− ∆∆ ttt bbb  of the previous frame, which consists 

of the coded static MFCC components 1−tb  and the coded dynamic features. For this 
experiment a 31 =D  bit vector quantizer was used for the delta (velocity) and just a 

12 =D  bit quantizer for the delta-delta (acceleration) parameter. Obviously, the 
dynamic parameters of the previous frame provide additional knowledge about the 
static parameters of the current frame, since the measured mutual information is 
larger than the one observed between tb  and 1−tb . This comes to no surprise, as the 
dynamic features capture the trend present in the feature trajectory.  

Obviously, the key to successful error concealment is the exploitation of the 
strong inter-frame correlation of MFCC feature vectors. In specifying the inter-frame 
correlation models of different complexity may be chosen. A good compromise 
between modeling accuracy and complexity is to assume that the source vector se-
quence tb , ,...2,1=t  is a homogeneous first-order Markov process, whose “transi-

tion probabilities” ( ) Mj
t

i
t jiP 2,...,1,,| )()( =bb  are independent of time. With this 

model, however, long-term dependencies e.g. on the phone level cannot be captured.  

9.3.3 Channel Models 

Let us now consider the transmission model of Figure 9.1. At the channel output a bit 
pattern ( )1(),...0( −= Myy ttty  is observed. Due to transmission errors ty  and tb  
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are not identical. Please note that ty  is a discrete random variable here, while we 
assumed ty  to be a continuous random variable in section 9.2. We prefer this abuse 
of notation to more easily link the DSR case considered in this section to the more 
general theory presented in section 9.2. 

In the following we use a superscript if we want to denote a specific bit pattern, 
i.e. )(i

tb  indicates the bit pattern corresponding to the i-th codebook centroid )(i
tc , 

{ }Mi 2,...,1∈ . 
 

Feature
Extraction Quantization Index 

Generation

Equivalent
Discrete 
Channel

Source Decoder &
Posterior Computation

ASR
Decoder

Source Coder

Speech tx tc tb

ty( )T
tp 1| yxWords

 
Fig. 9.1. Block diagram of distributed speech recognition system 

 
We consider two channel models: 
a) Time-variant binary symmetric channel (TV-BSC) 
The TV-BSC is an equivalent discrete channel which models the effects of addi-

tive white Gaussian noise on the transmitted bit sequence. While one usually as-
sumes constant bit error probability in a BSC, we want to allow here the bit error 
probability tp  to be time-variant. This model can be used to characterize wireless 
circuit-switched transmission, where the bit error rate varies, e.g. due to time-variant 
multi-path fading.  

As the channel is assumed to be memoryless, the probability of a received bit pat-
tern given the sent can be expressed as 

( ) ( )∏
−

=

=
1

0

)()( )(|)(|
M

m

i
tt

i
tt mbmyPP by  

(18) 

where 

( )
)()(
)()(

)(
)(1

)(|)( )(

)(
)(

mbmy
mbmy

if
mp

mp
mbmyP i

tt

i
tt

t

ti
tt ≠

=

⎩
⎨
⎧ −

=  
(19) 

Here, )(mpt  is the (instantaneous) bit error probability of the m-th bit of the t-th 
bit pattern. This probability can either be obtained from a soft-output channel de-
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coder or can be estimated from consistency checks applied to the received bits (Ion 
and Haeb-Umbach 2006a). 

b) Packet erasure channel 
In this channel model, a data packet is either completely lost or received without 

any bit error. It models the random loss of data packets, e.g. due to network conges-
tion. Most real communication channels exhibit packet losses occurring in bursts. 
Such channels can be modeled by a 2-state Markov chain, known as Gilbert model, 
see Fig. 9.2. In the figure p is the probability that the next packet is lost, provided the 
previous one has arrived; q is the probability that the next packet is not lost, given 
that the previous one was lost. The parameter q can be seen as controlling the bursti-
ness of packet losses. This channel model is often described in terms of the mean 
loss probability ( )qppmlp += / , the average probability of loosing a packet, and 
conditional loss probability qclp −=1 , i.e. the probability of loosing a packet, con-
ditioned on the event that the previous packet was lost. 

non-
loss loss

p

q

q−1p−1

 
Fig. 9.2. Gilbert model 

 
It is important to model the bursty nature of packet losses. It was shown that the 

word error rate of a DSR system depends strongly on the burstiness of the channel: 
Frame losses of up to 50% hardly have an effect on the word error rate, provided the 
average burst length is one packet (i.e. one frame pair), while the word error rate 
dramatically increases for longer average burst lengths (Gómez, Peinado, Sánchez 
and Rubio, 2007). 

 For a packet erasure channel model the probability of the received bit pattern, 
given the sent, is as follows: 

( )
( )

lostpacket 
receivedpacket

2
1|

)(

)( ifP
M

i
tti

tt
⎪⎩

⎪
⎨
⎧ −

=
by

by
δ

 
(20) 

Here ( )⋅δ  denotes the Kronecker delta impulse. 
Note that in practice often a combination of both error types is present. Commu-

nications that involve both a wireless and a packet-based wireline link may exhibit 
both packet losses and bit errors. Packets with bit errors are discarded by the User 
Datagram Protocol (UDP). While this is reasonable for many payloads, for DSR or 
speech transmission it would make more sense to deliver packets with bit errors, as it 
allows for more effective error concealment. UDP-Lite (RFC 3828, 2004) is a trans-
port protocol that allows the application to receive partially corrupted packets. 
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9.3.4 Estimation of Feature Posterior 

At the receiving end we are given the sequence T
T yyy ,...11 = , and our goal is to carry 

out speech recognition by employing the modified observation probability given by 
Eq. 12. 

To this end we need to compute the a posteriori probability density ( )T
tp 1| yx . 

Figure 9.3 illustrates the different processing steps. Note, that the input to the ASR 
decoder is no longer a feature vector, but a probability density function.  

 
Equivalent
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Prob.

Computation
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Estimation

Gaussian
Approx.
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Decoder
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( ))()( | j
t

i
tP bb

Channel 
Quality

( )T
tp 1| yx ( )yxyxµ || ;

tt
Σ

)(mpt

A Priori 
Probabilities

 
Fig. 9.3. Block diagram of posterior estimation and uncertainty decoding 

Introducing the hidden (unobservable) sent bit pattern, we can express the poste-
rior density as follows: 

( ) ( ) ( )∑
=
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Ti
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i
tt

T
t Ppp
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1
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)()(
1 ||| ybbxyx  

(21) 

The computation of the posterior probability ( )Ti
tP 1

)( | yb  can be accomplished us-
ing the Forward-Backward (FB) algorithm (Bahl, Cocke, Jelinek and Raviv 1974; 
Peinado et al. 2003): 
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(23) 

Both )(i
tα  and )(i

tβ  are computed recursively.  
Using the FB algorithm the a posteriori density can be computed for either of the 

two channel models outlined in section 9.3.3 and either of the two source models 
considered in section 9.3.2. In the case of a packet erasure channel a very efficient 
realization of the recursions can be found exploiting the property of Eq. 20 (Ion and 
Haeb-Umbach 2006b).  
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Although the dynamic vector components are not transmitted, error concealment 

can benefit from the superior prediction quality of a source model including static 
and dynamic vector components. For the source model which models the sequence 
of bit patterns corresponding to the static MFCC vectors only as a first-order Markov 
model, there are M2  bit patterns )(ib , { }Mi 2,...,1∈  per subvector, and the inter-

frame correlation is captured by a MM 22 ×  matrix, whose ( )th, ji  element is 

( ))()( | j
t

i
tP bb . On the other hand, for the source model which considers a feature 

vector including dynamic components, inter-frame correlation is captured by a 
2121 22 DDMDDM ++++ ×  matrix, where M, D1, and D2 are the number of bits used to code 

the subvector of static, first-order and second-order differential coefficients. The 
matrices are estimated beforehand on clean training data. Since only the bits corre-
sponding to the static MFCC vector are actually transmitted, the “transition probabil-
ity” is independent of the bits corresponding to the dynamic part of the feature vec-
tor: ( ) ( )tttttt PP bybbby |,,| 2 =∆∆ . In section 9.4 we compare the two source 
models w.r.t. speech recognition accuracy obtained on an error-prone channel. To 
simplify notation we will assume the source model of static components only in the 
remainder of this section.  

Note that the FB algorithm needs to be performed only inside isolated erroneous 
regions (error bursts), i.e. when ( ))(| i

ttP by  is not a Delta impulse. Then the FB re-
cursions are initialized using the last uncorrupted feature vector before and the first 
uncorrupted feature vector after the error burst. Detecting the presence of an uncor-
rupted feature vector is trivial in the case of a packet erase channel, but it is not that 
trivial in the case of a time-variant BSC. In the latter case erroneous bit patterns can 
be detected based on consistency checks among subsequent bit patterns and on cyclic 
redundancy check failure (Ion et al. 2006a). 

The other term needed in Eq. 21, ( ))(| i
ttp bx , is the probability density function 

(pdf) of the feature vector, given the i-th centroid. This VQ cell-conditioned pdf is 
modeled as a Gaussian ( ) ( ))()()( ,;| i

t
i

tt
i

tt Np Σ= cxbx , where )(i
tc  is the VQ centroid 

corresponding to )(i
tb . The within-cell covariance matrix )(i

tΣ  can be estimated on 
the training data. 

In order to simplify subsequent processing, the feature posterior, Eq. 21, is ap-
proximated a Gaussian density ( ) ( )yxyxµxyx ||1 ,;|

ttt
T

tN Νp Σ= , see Eq. 15. The pa-

rameters yxyxµ || ,
tt

Σ  of this Gaussian can be obtained by finding that Gaussian which 
has the smallest Kullback-Leibler divergence to the original non-Gaussian posterior 
( )T

tp 1| yx . This results in the following estimates: 

( )∑
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(24) 
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(25) 

 
This result makes intuitively sense: The mean yxµ |t

 of the Gaussian is equal to 
the mean of the original posterior, and the covariance is the sum of the between-VQ-
cell covariance and the within-VQ-cell covariance. For high resolution, i.e. suffi-
ciently large M, as is e.g. the case for the vector quantizer used in the ETSI DSR 
standard, the within-cell variance is negligibly small, such that Eq. 25 simplifies to  
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|
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|
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1

)(
| |

M

ttt
i

Ti
t

i
t

Ti
tP yxyxyx µcµcyb . 

(26) 

 
The posterior probability is the complete solution to the problem of estimating 

the uncorrupted features from the corrupted ones. The mean of the posterior given in 
(24) is the MMSE estimate of the feature vector tx . If one were only interested in 
the reconstruction of the uncorrupted feature vector, one could, for example, use this 
estimate. The maximum of the posterior is the maximum a posteriori estimate of the 
feature vector, another estimate commonly used in various estimation problems. The 
covariance matrix of the posterior, Eq. 25, is a measure of reliability of the recon-
structed features. If the parameter to be estimated and the observation are jointly 
Gaussian, it equals the covariance matrix of the MMSE estimation error. 

9.3.5 Related Work 

Several server based error mitigation schemes proposed for distributed speech rec-
ognition can be related to the framework presented in this article. 

Peinado et al. 2003 employ the MMSE estimate, Eq. 24, to reconstruct corrupted 
feature vectors on a channel exhibiting bit errors. A crucial issue, however, is the 
determination of the instantaneous bit error probability )(mpt  needed in Eq. 19. It 
may either be obtained from the soft-output of the channel and SNR estimation 
(Peinado et al. 2003) or a soft-output channel decoder (Haeb-Umbach et al. 2004). If 
the soft-output is not available the bit error probability can be estimated from consis-
tency checks applied to the received bit patterns (Ion and Haeb-Umbach 2006a). 

Marginalization reformulates the classification to perform recognition based on 
the reliable features alone (Endo et al. 2003). On a packet erasure channel there is a 
straightforward association of packet loss with unreliable data. However on a chan-
nel characterized by bit errors it is difficult to decide whether a feature is reliable or 
not, even if the instantaneous bit error probability of all bits making up the represen-
tation of the feature is available. In (Endo et al. 2003) a threshold was experimentally 
determined. If the bit error probability was larger than the threshold the correspond-
ing feature was marginalized. 
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Marginalization can be obtained in the presented framework, if the (simpler) fea-

ture posterior ( )ttp yx | , which is only conditioned on the received data correspond-

ing to the current frame, is used instead of ( )T
tp 1| yx  in the modified observation 

probability of Eq. 12. If a feature is declared lost, then ( ) ( )ttt pp xyx =| . Using this 
in Eq. 12, the integral evaluates to one, i.e. the corresponding frame is marginalized. 

The binary reliability measure used in marginalization can be replaced by a con-
tinuous confidence measure γ , taking values between zero and one. Weighted 
Viterbi (WV) decoding takes into account the confidence about a feature vector by 
raising the observation probability to the power of γ  (Bernard and Alwan 2001). 
Obviously, for the correctly received feature vectors there is 1=γ , and no changes 
to the observation probability occur. For a lost feature vector the maximum uncer-
tainty is expressed by 0=γ , resulting in an observation probability evaluating to 
one and being independent of the state. Thus with binary weighting WV is equiva-
lent to marginalization. However, raising the observation probability to some power 
γ  anywhere between zero and one lacks a probabilistic interpretation. Moreover, 
determining an optimal value for γ  is not an easy task. The methods proposed to 
determine the confidence measure γ  are rather empirical, and the optimal value 
depends on the recognition task (Cardenal-López, Garcia-Mateo and Docío-
Fernández 2006).  

The effect of raising the observation probability to some power between zero and 
one is to deemphasize the contribution of this frame to the ASR decision. The same 
effect is achieved with the observation probability of Eq. 12 proposed in this paper, 
if the feature posterior is not a Dirac delta impulse.  

9.4 Performance Evaluations 

In this section we present experimental results for distributed speech recognition 
employing the proposed error concealment techniques. We first describe the experi-
mental setup and then give speech recognition results for the two channel models 
outlined in section 9.3.3 and for two recognition tasks, a small vocabulary and a 
medium vocabulary task. 

9.4.1 Experimental Setup 

We consider a setup which is compatible to the ETSI standards for DSR. The whole 
front-end processing, consisting of feature extraction, source coding and packetiza-
tion is carried out according to the ETSI advanced front-end (ETSI 2002) standard. 

As an example for a channel exhibiting bit errors the GSM data channel was con-
sidered. A realistic simulation of the GSM physical layer processing was carried out 
including channel coding/decoding, interleaving/deinterleaving, modula-
tion/demodulation. The channel coding was TCH/F4.8 described in (ETSI 2003b) 
which uses convolutional coding at a rate 3/1=r . The channel decoding employed 
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the FB algorithm (Bahl et al. 1974) which is able to provide the instantaneous bit 
error probability )(mpt . We preferred this full channel simulation, since if we had 
used merely GSM error patterns, the instantaneous bit error rate would not have been 
available. 

We have chosen a channel model approximating a “typical urban” profile speci-
fied by COST 207 (COST 1989). The model is characterized by 12 propagation 
paths, delay spread of 1.03 µs and Rayleigh fading. The terminal was assumed to be 
moving at 50 km/h. Various Carrier-to-Interference (C/I) power ratios were simu-
lated, ranging from 10 dB to 2.5 dB. Note that C/I=2.5 dB is a very poor channel, 
where the bit error rate is as high as 3.6%.  

For the packet erasure channel we adopted the Gilbert model to model that packet 
losses occur in bursts. In the literature often four channel conditions are evaluated, 
with C1 corresponding to mildly bad and C4 to very poor channel conditions. Table 
9.2 gives the conditional and mean loss probabilities of the four conditions (Boulis et 
al. 2002). In our simulations we transmitted one frame pair per packet. 

Table 9.2. Packet erasure channel test conditions 

Condition C1 C2 C3 C4 
clp 0.147 0.33 0.50 0.60 
mlp 0.006 0.09 0.286 0.385 

 
Different error concealment techniques were applied at the receiving (server) side 

and compared in terms of achieved word error rate obtained on two databases. 
The small vocabulary task is the clean test set of the Aurora 2 database, which 

consists of 4004 utterances from 52 male and 52 female speakers distributed over 
four subsets. The sampling rate is 8 kHz. The acoustic models used in the recognizer 
were those described in (Hirsch et al. 2000): 16 states per word, 3 Gaussians per 
state. 

The medium vocabulary task is the Wall Street Journal WSJ0 5k Nov. ’92 
evaluation test set (Paul and Baker 1992) comprising 330 utterances of 4 male and 4 
female speakers, summing up to 40 min of speech. Here, the sampling rate is 16 kHz. 
Recognition experiments were carried out on this test set using a closed vocabulary 
bigram language model. The acoustic model consisted of 3437 tied states. The pa-
rameters of the 10-component mixture densities were trained on the SI-84 set of the 
WSJ corpus using the HTK toolkit (Young et al. 2004). 

9.4.2 Results on GSM Data Channel 

Figure 9.4 gives an illustrative example of the reconstruction achieved by employing 
the a posteriori density. The figure shows how the feature Elog  is reconstructed in 
the presence of bit errors during transmission. The continuous solid line labeled tx  is 
the sent (“true”) value of the parameter over the frame index t. y|txµ  is the MMSE 

estimate, and yy || tt xx σµ ±  the MMSE estimate plus/minus one standard deviation of 
the a posteriori density. The interval given in this way can be interpreted as confi-
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dence interval for the MMSE estimate. The curve NFR shows the reconstruction by 
nearest frame repetition, which is the error concealment strategy proposed in the 
ETSI standard. The grey areas show intervals in which transmission errors occurred. 
We used two grey scales to distinguish between regions where transmission errors 
occurred in the bit pattern carrying the Elog  component (dark grey) and regions 
where the bit patterns corresponding to other subvectors of the same frame were 
affected by errors (light grey). It can be seen that the Elog  component is not af-
fected by transmission errors in other subvectors. This can be attributed to the fact 
that the a posteriori computation operates on a per-subvector basis. Uncorrupted 
parts are forwarded to the recognizer without modification. A subvector-based error 
concealment, such as this or the one proposed by (Tan, Dalsgaard and Lindberg 
2004) is superior to a frame-based scheme, such as NFR, where a complete frame is 
modified, even if only one subvector is degraded by transmission errors. But even if 
the illustrated Elog  component is affected by transmission errors, much better fea-
ture reconstruction is achieved with the proposed method compared to NFR. 
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Fig. 9.4. Example of feature reconstruction. The figure shows the trajectory of the Elog  

feature over time (labeled tx ) and its reconstructions, either by nearest frame repetition (NFR) 
or by the proposed scheme. The shaded areas indicate regions where bit errors occurred during 
transmission, either in the  Elog  component (dark grey) or another component of the feature 

vector (light grey). 

 
Figure 9.5 and Fig. 9.6 present word error rates for different Carrier-to-

Interference (C/I) power ratios for the Aurora 2 and WSJ0 database, respectively. In 
these figures, the performance of the proposed scheme, termed uncertainty decoding 
(UD), is compared with marginalization (M), nearest frame repetition (NFR) and 
Weighted Viterbi decoding (WV). For WV, the confidence γ  was computed as in 
(Potamianos and Weerackody 2001), however using the instantaneous bit error prob-
ability from the channel decoder. For UD, we employed the source model based on 
the correlation of static features only. It can be seen, that UD outperforms all other 
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schemes. Speech recognition accuracy is hardly affected for C/I-values as low as 2.5 
dB. Figure 9.5 also shows the bit error rate (BER) at the output of the channel de-
coder. It is interesting to note that BER increases by almost three orders of magni-
tude when C/I is reduced from 10 dB to 2.5 dB, while the word error rate achieved 
by UD is only mildly affected. This underscores that uncertainty decoding makes the 
ASR decoder very robust towards degraded channel conditions.  
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Fig. 9.5. Word error rates for transmission over GSM TCH/F4.8 channel using different error 
concealment schemes; Aurora 2 task. The dash-dotted line indicates the bit error rate (BER) at 

the output of the channel decoder. 
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Fig. 9.6. Word error rates for transmission over GSM TCH/F4.8 channel using different error 

concealment schemes; WSJ0 task. 
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As the two are closely related, the frame error rate increases similarly to BER, 

from 0.08% at C/I = 10 dB to 60% at C/I = 2.5 dB. As a consequence marginaliza-
tion and nearest frame repetition, which operate on a vector rather than a subvector 
basis, perform poorly.  

9.4.3 Results on Packet Erasure Channel 

For the experiments on the packet erasure channel we used the channel conditions 
C1 to C4, specified in Table 9.2. Figure 9.7 and Fig. 9.8 display the word error rates 
of different error concealment techniques for the Aurora 2 and WSJ0 task, respec-
tively. In the figures we included a condition C0 as a reference, which corresponds to 
an error-free transmission. Results are presented for two variants of the proposed 
scheme: uncertainty decoding employing an a priori model of the source which cap-
tures correlation among the static MFCCs alone (UD) and the one utilizing the corre-
lation among the full (static and dynamic) feature vector (UD-dyn). It can be seen, 
that UD outperforms marginalization (M) and nearest frame repetition (NFR). The 
performance of Weighted Viterbi (WV) decoding comes close to UD. For the WV 
curve the lost features were reconstructed by NFR, and their confidence ( )tγ  was 
chosen dependant on the relative position (τ ) within an error burst. It equals one at 
the start and end of the burst and decreases exponentially according to 
( ) ( ) τατγτγ =+=+ endstart tt  towards the middle (Cardenal-López et al. 2006). Here, 

startt  and endt  denote the starting and ending time of the error burst. The optimal 
value of α  was experimentally found to be 7.0=α  for this task. 
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Fig. 9.7. Word error rates for packet erasure channel using different error concealment 

schemes; Aurora 2 task 

 



Error Concealment 21
 

C4 C3 C2 C1 C0
5

10

15

20

25

30

Condition

W
E

R
 [%

]

 

 

NFR
M
WV
UD
UD−dyn

 
Fig. 9.8. Word error rates for packet erasure channel using different error concealment 

schemes; WSJ0 task 

9.5 Conclusions 

Error concealment is concerned with mitigating the detrimental effect that transmis-
sion errors may have on the recipient of the signal by exploiting residual redundancy 
in the bit stream of the source coder output. In distributed speech recognition (DSR) 
the recipient is the ASR decoder, which, unlike a human listener, can take advantage 
of both the optimally reconstructed transmitted data and information about the reli-
ability of the reconstruction. The Bayes decision rule therefore has to be reformu-
lated to account for a corrupted or unreliable feature vector sequence. This results, 
under certain assumptions, in just a modification of the observation probability com-
putation, while the structure of the decoder, which is based on the Viterbi search, 
remains unchanged. Crucial to the performance of this modified decoding rule is the 
accuracy of the a posteriori probability density estimate of the uncorrupted feature 
vector, given all the received corrupted ones. For DSR we were able to find an effi-
cient estimation method, both for channels characterized by bit errors and channels 
exhibiting packet losses. The key was to exploit the high inter-frame correlation of 
MFCC feature vectors. Using these techniques high recognition accuracy can be 
maintained over a wide range of channel conditions.  

It should be noted that server-based error concealment techniques, as the ones de-
scribed in this contribution, are fully compatible with the ETSI standards for distrib-
uted speech recognition. 
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