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Fachgebiet Nachrichtentechnik, Universität Paderborn, 33098 Paderborn
E-Mail: {haeb}@nt.uni-paderborn.de
Web: www-nt.uni-paderborn.de

Abstract
The term uncertainty decoding has been phrased for a class
of robustness enhancing algorithms in automatic speech
recognition that replace point estimates and plug-in rules
by posterior densities and optimal decision rules. While
uncertainty can be incorporated in the model domain, in
the feature domain, or even in both, we concentrate here
on feature domain approaches as they tend to be com-
putationally less demanding. We derive optimal decision
rules in the presence of uncertain observations and dis-
cuss simplifications which result in computationally effi-
cient realizations. The usefulness of the presented statis-
tical framework is then exemplified for two types of real-
world problems: The first is improving the robustness of
speech recognition towards incomplete or corrupted fea-
ture vectors due to a lossy communication link between
the speech capturing front end and the backend recognition
engine. And the second is the well-known and extensively
studied issue of improving the robustness of the recognizer
towards environmental noise.

1 Introduction
Improving the robustness of state-of-the-art automatic
speech recognition (ASR) continues to be an important re-
search area. Current hidden Markov model (HMM)-based
speech recognition systems are notorious for performing
well in matched training and test conditions while quickly
degrading in the presence of a mismatch. While such a
mismatch may be caused by many factors, probably one of
the most studied problems is improving the robustness of a
recognizer trained on clean training data to test data being
corrupted by environmental noise.

Huge research efforts have been devoted to overcom-
ing this lack of robustness, and a wealth of methods has
been proposed. These can be categorized into methods
that either try to compensate the effect of distortions on the
features (so-called front-end methods) or approaches that
modify the models used in the recognizer to better match
the incoming distorted feature stream (back-end methods).

Traditionally, front-end methods aim at obtaining point
estimates of the uncorrupted, clean features. Likewise,
back-end methods usually try to obtain point estimates of
parameters, such as the mean vectors of the observation
probabilities. These estimates are then ”plugged” into the
Bayesian decision rule as if they were perfect estimates.
However, more recently the focus has shifted to estimating
the features or parameters together with a measure of relia-
bility of the estimate and propagating the uncertainty to the
decision rule [1,7,10,5,17,19,21,23,26,27]. The underly-
ing rationale is that an estimate is never perfect and that the
recognizer can benefit from knowing the estimation error
variance by deemphasizing the contributions of unreliable
estimates to the overall decision on the word sequence.

The use of such optimal decision rules is by no means
new. How to modify the Bayesian decision rule in the pres-

ence of missing or noisy features can be found in many
textbooks on pattern recognition, see e.g. [12]. Two de-
velopments, however, are fairly recent: how to modifiy the
decision rule for HMM classifiers and how to obtain relia-
bility information for a given class of distortions.

In this paper we first rederive in a slightly different
manner an optimal decision rule for HMM-based speech
recognition in the presence of corrupted feature vectors,
which we have originally presented in [21]. We specifi-
cally place emphasis on exploiting the temporal correlation
among the feature vectors, thus relaxing – to some extent
– the conditional independence assumption, which is gen-
erally used in HMM based speech recognition and which
is considered to be one of its major shortcomings. If ap-
propriate approximations are made, the new decision rule
requires only an adjustment of the likelihood computation
compared to the classical decoder.

A key element of this new decision rule is the posterior
density of the clean feature vector, given the observed and
corrupted feature vectors. We show how this posterior can
be estimated for two types of signal degradations: First,
for a remote ASR system, where the speech capturing unit
is connected to the decoder via an error-prone communica-
tion network, and second, for feature vectors degraded by
additive environmental noise.

This paper is organized as follows: In the next section
we formulate the speech recognition optimization problem
in the presence of uncertain features and correlation among
successive feature vectors. From this an uncertainty de-
coding rule is derived and it is shown that other decoding
rules found in the literature can be obtained as special cases
of this more general rule. After discussing realization is-
sues in Section 3 we discuss the feature posterior estima-
tion for the two classes of signal degradation mentioned
above. Section 5 presents experimental results comparing
uncertainty decoding with plug-in rules.

2 Optimal Decoding Rules
Starting from the classical Bayesian framework for speech
recognition, we subsequently extend it to account for cor-
rupted observations and correlation among successive fea-
ture vectors.

2.1 Bayesian Framework of Speech Recogni-
tion

Given a sequence of feature vectors xT
1 = (x1, . . . ,xT ) of

length T extracted from an utterance, the classification task
comes down to finding that sequence of words Ŵ from
a given vocabulary which maximizes the joint probability
p(W,xT

1 ) or, equivalently,

Ŵ = argmax
W

p(xT
1 |W) ·P(W). (1)

The a priori probability of the word sequence, P(W), is
provided by the language model, while the acoustic model
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Figure 1: Bayesian network prevalent in speech recogni-
tion.

is concerned with computing p(xT
1 |W). In a HMM-based

speech recognizer this is accomplished by introducing the
sequence of hidden states sT

1 = (s1, . . . ,sT ) underlying the
sequence of observations:

p(xT
1 |W) = ∑

{sT
1 }

p(xT
1 |s

T
1 ) ·P(sT

1 |W) (2)

where the summation is carried out over all state sequences
within W. In order to solve (2) recursively, both terms
under the sum are factorized:

p(xT
1 |s

T
1 ) =

T

∏
t=1

p(xt |x
t−1
1 ,sT

1 ) (3)

P(sT
1 |W) =

T

∏
t=1

P(st |st−1
1 ,W). (4)

These expressions can be simplified by considering the
statistical dependencies among the random variables as de-
picted by the Bayesian network of Fig. 1. This figure il-
lustrates the assumptions made in most of today’s speech
recognition engines: the state sequence being a first-order
Markov process and the feature vectors being conditionally
independent:

P(sT
1 |W) =

T

∏
t=1

P(st |st−1,W) (5)

p(xT
1 |s

T
1 ) =

T

∏
t=1

p(xt |st). (6)

Using (5) and (6) in (2) we arrive at the well known result

p(xT
1 |W) = ∑

{sT
1 }

T

∏
t=1

p(xt |st) ·P(st |st−1,W). (7)

An approximate value for (7) can be computed by the
Viterbi algorithm.

2.2 Presence of Corrupted Features
In the following we denote xT

1 the sequence of ”clean” or
uncorrupted features (assuming that training has been car-
ried out with uncorrupted data). In many practical cases
there exists a mismatch between training and testing con-
ditions. This can be expressed by the fact that the sequence
of test features xT

1 , which are representative of the training
conditions, is not observable. Instead of xT

1 , a corrupted
version yT

1 is observed. The latter may differ from the for-
mer due to environmental noise or due to errors occurring
during transmission over a communication network, e.g. in
a distributed speech recognition setup.
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Figure 2: Bayesian network considering temporal correla-
tion between features.

As xT
1 is not available, the recognition task is stated

now as finding the word sequence most likely to yield yT
1 :

Ŵ = argmax
W

p(yT
1 |W) ·P(W). (8)

Taking yT
1 as if they were the ”clean”, uncorrupted data,

i.e. interpreting yT
1 as an estimate of xT

1 to be used in
(1) results in the well-known poor performance of speech
recognition in the presence of a mismatch between training
and testing conditions.

In a ”plug-in” decision rule we would replace the ob-
served yT

1 by estimates x̂T
1 of the clean feature vectors ob-

tained from yT
1 and leave (8) or (1) otherwise unchanged.

However, one can do better by accounting for the un-
reliability in these estimates. To this end we introduce the
unobservable (hidden) sequence xT

1 of clean speech feature
vectors:

p(yT
1 |W) =

∫

{xT
1 }

p(yT
1 |x

T
1 )p(xT

1 |W)dxT
1 , (9)

where the notation
{

xT
1
}

shall indicate that the integration
has to be carried out over all possible feature vector se-
quences of length T .

The Bayesian network of Fig. 2 depicts the assumed
statistical dependencies among the random variables under
consideration. Note that the observed feature vectors are
statistically independent of the HMM states, if the clean
features are given; and further note that we assumed a di-
rect statistical dependency among subsequent clean feature
vectors, thus abandoning the conditional independence as-
sumption.

Again introducing the HMM state sequence, the acous-
tic search now has to compute:

p(yT
1 |s

T
1 ) =

∫

{xT
1 }

p(yT
1 |x

T
1 )p(xT

1 |s
T
1 )dxT

1 , (10)

where

p(xT
1 |s

T
1 ) =

T

∏
t=1

p(xt |xt−1,sT
1 ). (11)

Using (11) in (10) we obtain

p(yT
1 |s

T
1 ) =

∫

{xT
1 }

p(yT
1 |x

T
1 )

T

∏
t=1

p(xt |xt−1,sT
1 )dxT

1

∝
∫

{xT
1 }

p(xT
1 |y

T
1 )

p(xT
1 )

T

∏
t=1

p(xt |xt−1,sT
1 )dxT

1

=
∫

{xT
1 }

T

∏
t=1

p(xt |xt−1,y
T
1 )

p(xt |xt−1)
p(xt |xt−1,sT

1 )dxT
1

(12)
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To be able to further simplify (12) we first assume that
∏T

t=1 p(xt |xt−1,sT
1 ) ≈ ∏T

t=1 p(xt |xt−1,st ), which is jus-
tified by the fact that the dependency between xt and
(st ,xt−1) is stronger than between xt and st+1, st+2, . . ..
Disregarding also the dependency on xt−1 allows us to
change the order of integral and product:

p(yT
1 |s

T
1 ) ≈

∫

{xT
1 }

T

∏
t=1

p(xt |y
T
1 )

p(xt )
p(xt |st )dxT

1

=
T

∏
t=1

∫

{xt}

p(xt |y
T
1 )

p(xt)
p(xt |st)dxt , (13)

and only after this change we are still able to carry out
decoding using the Viterbi algorithm or any other search
technique established in speech recognition.

A comparison of (13) with (6) reveals that the only dif-
ference to the classical decoding rule presented in Section
2.1 is that the observation likelihood p(xt |st) has to be re-
placed by the likelihood

pLH(yT
1 |st) =

∫

{xt}

p(xt |y
T
1 )

p(xt)
p(xt |st)dxt (14)

This decoding rule has been first published in [21], how-
ever here we have presented a sightly different derivation.

2.3 Related Uncertainty Decoding Rules
One might wonder whether the derived decoding rule re-
ally accounts for direct inter-frame correlation of feature
vectors or whether we are not just back with the condi-
tional independence assumption, since we had to disre-
gard the dependencies on xt−1 in (12) to arrive at an op-
timization problem tractable by standard speech recogni-
tion engines. A closer look at the derivation reveals that
the relaxation of the conditional independence assumption
is reflected by the posterior p(xt |y

T
1 ) being conditioned on

all observed feature vectors. If conditional independence
were assumed, i.e. if xt were related to xt−1 only indi-
rectly via st and st−1, then

p(yT
1 |x

T
1 )p(xT

1 |s
T
1 ) =

T

∏
t=1

p(yt |xt)p(xt |st) (15)

∝
T

∏
t=1

p(xt |yt)

p(xt )
p(xt |st), (16)

i.e. the likelihood would now read

p(CI)
LH (yt |st) =

∫

{xt}

p(xt |yt )

p(xt)
p(xt |st)dxt (17)

where the superscript (·)(CI) shall indicate conditional in-
dependence.

This simplified version of uncertainty decoding has
been proposed earlier in the framework of noise-robust
speech recognition [10, 4, 22, 23, 24]. The variants found
in the literature differ in the way the posterior p(xt |yt) or,
alternatively, the joint density p(xt ,yt ) is obtained.

In [7] and [27] the denominator p(xt) has been ne-
glected – an approximation that has not been identified as
such. This approximation can be motivated on the grounds
that the prior p(xt ) should have a larger variance than the
posterior. Thus the denominator can be considered con-
stant for the range of values of xt , where the posterior as-
sumes values significantly larger than zero. However, this

argument does no longer hold in the presence of strong
distortions, e.g. low SNR. Then the use of the approximate
decision rule, which neglects the prior, results in artifacts
and poor performance. This inconsistency has been ob-
served in [23], where, however, the reason for it remained
unclear.

The potential superiority of the likelihood (14) over
(17) can be illustrated with the following example: Con-
sider a distortion which makes the observation at time t
completely unreliable and leaves all other observations un-
affected. Using (17), the frame at time t is marginalized.
On the other hand, (13) is able to exploit the correlation
in the sequence of feature vectors since the posterior is
computed taking into account not only the instantaneous
observed value yt but also past and future observations.
Thus, an uninformative or lost observation at time t no
longer results in a constant observation probability at time
t. Discrimination is still possible as long as the feature
posterior p(xt |y

T
1 ) does not equal the prior p(xt). That ac-

tually means that some part of the lost information can be
recovered from reliable neighboring features.

3 Realization Issues
The good news is the that the search architecture need not
be changed for uncertainty decoding. Only the evaluation
of the observation likelihood has to be modified. How-
ever, the bad news is that a numerical evaluation of the in-
tegral as required by the modified observation probability
would increase the computational burden beyond the limits
of practical interest. Fortunately, the integral can be solved
analytically by making the following assumptions:
1. The state conditioned observation probability of the

uncorrupted feature is a Gaussian mixture:

p(xt |st) =
M

∑
m=1

cst ,mN (xt ; µst ,m,Σst ,m) (18)

where cst ,m is the weight, µst ,m the mean vector and
Σst ,m the covariance matrix of the m-th mixture com-
ponent of the observation probability of state st . This
is the common assumption in speech recognition.

2. The a priori probability density of the clean speech fea-
ture is a Gaussian:

p(xt) = N (xt ; µx,Σx). (19)

Experimental data have proven this assumption to be
quite valid, with certain reservations concerning the
log energy component. Its probability density function
has multiple peaks making single Gaussian modeling a
rather coarse approximation.

3. The feature posterior given the observations is a Gaus-
sian:

p(xt |y) = N (xt ; µxt |y
,Σxt |y). (20)

Here the notation xt |y stands for either xt |yt or xt |y
T
1 .

Eq. (20) is the most debatable assumption, as we often
observed a multi-modal shape of the posterior. Some
researchers therefore suggested to use a Gaussian mix-
ture model instead [27]. As this, however, has a strong
impact on the computational effort, we prefer to stick
to the model of a single Gaussian here.

ITG-Fachtagung Sprachkommunikation  ·  8. – 10. Oktober 2008 in Aachen VDE VERLAG GMBH



If we assume all Gaussians of Eqs. (18-20) to have
diagonal covariance matrices, the observation probability
of Eqs. (14) and (17) can be factorized over the feature
vector dimensions. Thus, we obtain:

M

∑
m=1

cst ,m

∫

{xt}
N (xt ; µst ,m,σ2

st ,m)

·
N (xt ; µxt |y,σ2

xt |y
)

N (xt ; µx,σ2
x )

dxt

=
M

∑
m=1

c′st ,mN (µet ; µst ,m,σ2
st ,m +σ 2

et ).

(21)

where the equivalent mean µet , variance σ 2
et and weights

c′st ,m are given by the following equations [12]:

µet

σ2
et

=
µxt |y

σ2
xt |y

−
µx

σ2
x

(22)

1
σ2

et

=
1

σ2
xt |y

−
1

σ2
x

(23)

c′st ,m = cst ,m
N (0; µxt |y,σ2

xt |y
)

N (0; µx,σ2
x )N (0; µet ,σ2

et )
. (24)

Note, however, that from the assumption of a diagonal
covariance of the prior and the observation likelihood it
cannot be inferred that the posterior should also be Gaus-
sian. This depends very much on the kind of distortion
and notably for additive environmental noise the diagonal
assumption for the posterior is quite coarse.

Eq. (21) states that the originally trained observation
probability of the clean feature must be changed by in-
creasing the variance by σ 2

et , and that it has to be evaluated
at µet .

This variance has to be added to all acoustic model
components, which totals a few hundreds for a small task
but which can easily exceed hundred thousand for a large
task, such as a Broadcast News system. Moreover, this
variance addition is not as simple to apply as the Gaussian
normalization term that is usually cached must be recom-
puted.

An unfavorable side effect of techniques which
broaden the observation probability densities, such as un-
certainty decoding, is that the search space increases due
to reduced discriminability between the word hypotheses
in the presence of uncertain observations. As the obser-
vation probability of an unreliable feature tends to be the
same for all model states, the beam pruning looses effi-
ciency and the number of “active” states increases. These
factors lead to a slowdown of the recognition computation,
the degree depending on the problem at hand.

4 Feature Posterior Estimation
The key element of the uncertainty decoding rule is the
feature posterior p(xt |y

T
1 ), and the success of uncertainty

decoding crucially depends on how well it can be deter-
mined.

Knowledge of the posterior density enables one to
compute an optimal estimate with respect to any criterion.
For example the minimum mean-square error (MMSE) es-
timate is the conditional mean x̂MMSE =

∫

xt p(xt |y
T
1 )dxt .

Similarly, a measure of accuracy of the estimate can be ob-
tained form the posterior. In the Gaussian case the variance

of the posterior is even identical with the estimation error
variance.

Conceptually, the posterior can be estimated recur-
sively via the following equations, where we have re-
stricted ourselves to causal processing, i.e. rather than
computing p(xt |y

T
1 ) we compute p(xt |y

t
1):

p(xt |y
t−1
1 ) =

∫

p(xt |xt−1)p(xt−1|y
t−1
1 )dxt−1 (25)

p(xt |y
t
1) =

p(yt |xt )p(xt |y
t−1
1 )

∫

p(yt |xt)p(xt |y
t−1
1 )dxt

(26)

By using p(yt |xt ,y
t−1
1 ) = p(yt |xt) in the last equation, we

assumed independent and identically distributed observa-
tions.

For the determination of the posterior, the following
issues have to be addressed:
• A dynamical model of the clean speech feature tra-

jectory has to be established, delivering the term
p(xt |xt−1) needed in (25).

• An observation model p(yt |xt ) to be used in (26) has
to be derived for the problem at hand.

• An appropriate inference algorithm has to be chosen
or developed, which computes (an approximation of)
p(xt |y

t
1) or p(xt |y

T
1 ). Note that in general the pos-

terior cannot be determined analytically. The imple-
mentation may require the storage of the entire (non-
Gaussian) pdf which is, in general terms, equivalent
to an infinite dimensional vector [25]. Therefore one
often has to resort to approximative, sub-optimal solu-
tions.

In the following we discuss these three issues for the fol-
lowing two applications
• Distributed Speech Recognition (DSR), where quan-

tized features are transmitted over a lossy communica-
tion link.

• Speech corrupted by additive environmental noise.

4.1 Feature Posterior Estimation for DSR
In Distributed Speech Recognition (DSR) a client carries
out feature extracion and transmits the coded features via
a communication network to a server, which conducts the
actual speech recognition. To ensure the interoperability
of various equipments, the ETSI-DSR standards were de-
veloped by the Aurora working group [13, 14]. They de-
fine the feature extraction and quantization algorithms to
be used in a front end of a DSR system. Fig. 3 shows a
block diagram of the DSR system featuring the elements
relevant for feature posterior computation.

PSfrag replacements
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Figure 3: Block diagram of processing elements relevant
for feature posterior estimation in a DSR system.

As can be seen in Fig. 3 the features are quantized
to centroids ct and mapped to bit patterns bt which are
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transmitted over an error-prone equivalent discrete chan-
nel. The correlation among bit patterns successive in time
is modeled as a first-order Markov process. Note that the
transmitted bit patterns bt and the received b̂t are discrete
random variables. The dynamics of the clean and quan-
tized features can therefore be described by the a priori
probability matrix P(b

(i)
t |b

( j)
t−1), where b

(i)
t denotes the i-

th out of 2M bit patterns of length M; i.e. i, j ∈ {1, . . . ,2M}.
They can be estimated on clean speech training data.

The effect of the channel is captured by the observa-
tion likelihood P(b̂t |bt). In [21] we have shown how this
term can be computed for channels exhibiting bit errors or
packet losses.

An appropriate inference algorithm in the presence of
discrete Markov sources is the Forward-Backward algo-
rithm [2] which computes

γt(i) = P(bt = b
(i)
t |b̂T

1 ) =
αt (i)βt(i)

∑2M
j=1 αt ( j)βt( j)

(27)

by a recursion on the forward probabilities αt(i) and a re-
cursion on the backward probabilities βt(i), defined by:

αt (i) = P(b̂t
1,bt = b

(i)
t ) (28)

βt(i) = P(b̂T
t+1|bt = b

(i)
t ). (29)

Once the discrete bit pattern posterior P(bt = b
(i)
t |b̂T

1 ) is
obtained, the continuous feature posterior can be derived
from it [20].

4.2 Feature Posterior Estimation for noise-
robust ASR

The effect of additive environmental noise on the cepstral
feature vectors is highly non-linear. In a simplified model
which neglects the inner product between the clean speech
and noise, the noisy cepstral feature vector is given by

yt = xt +MDCT log
(

1+ eM+
DCT (nt−xt)

)

, (30)

where xt and nt denote the clean speech and noise-only
ceptral feature vectors. Here, yt , xt and nt are continuous
random variables. MDCT and M+

DCT are the Discrete Co-
sine Transform matrix and its pseudo-inverse, respectively.

Switching Linear Dynamical Models (SLDM) have
been proposed to model the dynamics of the clean speech
feature trajectory [9], since a single linear dynamical
model cannot account sufficiently well for the complicated
dynamics of speech. In a SLDM xt is described by a piece-
wise linear dynamical model, where a discrete regime vari-
able determines which LDM is active at a time:

xt = A(θt)xt−1 +b(θt)+ut

ut ∼ N (ut ;0,C(θt))
(31)

Here, the state transition matrix A(θt ), the bias b(θt) and
the covariance matrix of the system noise C(θt ) depend
on the regime variable θt ∈ {1, . . . ,Mθ}, where Mθ is the
number of dynamical models. The parameters can be es-
timated on clean speech training data by a variant of the
Expectation-Maximization (EM) algorithm [9].

Exact inference for a SLDM is computationally in-
tractable as the complexity increases exponentially with

time, since every possible history of the regime variable
has to be considered. A number of approximate inference
algorithms has been proposed, such as the Generalized
Pseudo-Bayes (GPB) and the Interacting Multiple Model
(IMM) algorithm [3], where the Gaussian mixture result-
ing after each iteration is collapsed to a single Gaussian
before advancing to the next iteration.

Another issue is the non-linear observation model (30).
It is either statistically or analytically linearized resulting
in a bank of unscented or extended Kalman filters for pos-
terior estimation.

5 Experimental Results
In this section we present experimental results on the Au-
rora 2 task [18] . It consists of 4004 utterances (contin-
uously spoken digit strings) from 52 male and 52 female
speakers, distributed over four subsets. The sampling rate
is 8kHz. There is no language model for this task. The
acoustic models have been trained in clean conditions as
described in [18]. With feature vectors computed using the
ETSI DSR standard [14] the WER in error-free conditions
(i.e. without channel-induced errors or additive noise) is
0.86%.

For the experiments on DSR we used this noise-free
test set, while for the experiments on noise robustness we
employed test set A, which consists of four subsets of 1001
utterances each. To each subset noise of a different type
has been artificially added. These noise types are subway,
babble, car and exhibition.

5.1 Packet Loss
In this section we consider Distributed Speech Recogni-
tion over an IP channel, where packet erasure is the dom-
inant error pattern. This phenomenon can be attributed to
network congestions but also to possible bit errors in the
low-level network layer which alter the packet checksum.
Often, the 2-state Gilbert model [15] is used to model the
bursty nature of packet losses. The model has two param-
eters: the mean loss probability mlp, which is the average
probability of packet loss, and the conditional loss prob-
ability clp, which is the probability of packet loss given
that the previous packet was also lost. The parameters de-
pend on many factors such as network load, packet size,
etc., however, for simulation purposes some authors in-
cluding [6, 8, 16] extensively used the settings given in Ta-
ble 1.

Table 1: The conditional loss probability (clp) and mean
loss probability (mlp) for the simulated network condi-
tions.

Condition C1 C2 C3 C4
clp 0.147 0.33 0.5 0.6
mlp 0.006 0.09 0.286 0.385

The number of feature vectors that can be accommo-
dated in a payload may vary, however in our experiments
we used one frame-pair (two feature vectors) per packet.

Table 2 presents the word accuracies obtained on Au-
rora 2 for the following variants of the decoding rule. For
”MMSE0” and ”MMSE1”, the posteriors are collapsed to
their means: p(xt |y) ≈ δ (xt − x̂t), where x̂t = E[xt |y].
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Here, the notation xt |y stands for xt |yt in the case of
”MMSE0” and xt |y

T
1 in the case of ”MMSE1”. Collapsing

the posterior to a point estimate results in the well-known
plug-in rules: the estimates are taken as if they were per-
fect, i.e. the likelihood p(x̂t |st) is used in the recognizer.

The entries in the rows ”UD0” and ”UD1” refer to
uncertainty decoding, where the likelihood computation
was carried out according to (17) and (14), respectively.
Further the results obtained with the error concealment
method proposed in the ETSI standard (nearest frame rep-
etition) is given as a baseline.

It can be clearly observed that uncertainty decoding
improves performance over plug-in rules. Note that in this
setup the use of decoding rule (17) (UD0) actually corre-
sponds to marginalization in case of a lost feature. Another
consequence is that MMSE0 reduces to simply inserting
the feature a priori mean value in the gap periods, resulting
in very poor performance.

Table 2: Word accuracy [%] on the Aurora 2 task for trans-
mission over the packet-switched network with 2 features
vectors per packet.

Approach C1 C2 C3 C4
ETSI (NFR) 99.10 98.94 97.33 94.80

MMSE0 98.33 86.59 60.37 49.02
MMSE1 99.10 98.97 97.58 94.26

UD0 99.07 98.81 97.11 94.63
UD1 99.10 99.02 98.34 96.91

5.2 Environmental Noise
In this subsection we experiment with uncertainty decod-
ing as a means to improve the robustness of the recognizer
to environmental noise. Table 3 shows the results for the
subsets of test set A averaged over SNRs 0, 5, 10, 15 and
20 dB. The first two lines give the results obtained with
the Standard (”SFE”) and Advanced Front End (”AFE”),
as standardized by ETSI [13, 14].

As outlined in section 4.2 a SLDM was used to model
the dynamics of speech. For the experiments reported here,
Mθ = 16 different models were used. The Generalized
Pseudo-Bayesian Algorithm was used to compute the pos-
terior p(xt |y

t
1) leading to the results of the line ”UD1c”

(c: causal processing), while an additional backward filter-
ing using a heuristics outlined in [11] leads to the poste-
rior p(xt |y

T
1 ) (UD1). For the computation of the posterior

p(xt |yt) to be used for MMSE0 and UD0 decoding the
state transition matrix A(θt) in (31) is set to zero, result-
ing in a Gaussian mixture model for p(xt).

The results show a similar trend as those of Table 2:
plug-in decoding rules are inferior to uncertainty decoding
and a clean speech posterior conditioned on all observa-
tions is superior to a posterior conditioned on the current
and all past, which in turn is superior to a posterior condi-
tioned only on the current observation.

It should also be noted that it is common practice to
use a heuristics in uncertainty decoding for noise-robust
speech recognition, for which no satisfying theoretical ex-
planation has been given sofar. Both in [10], [23] and also
for the results presented here, the variance of the poste-
rior has been thresholded to make sure that it is sufficiently

lower than the variance of the prior. We used the following
rule: if σ 2

xt |y
> 0.05σ 2

x, then σ 2
xt |y

= 0.05σ 2
x.

Overall, the results obtained by posterior estimation
and uncertainty decoding are somewhat disappointing, as
the performance of the Advanced Front End could not be
attained.

Table 3: Word accuracy [%] on test set A of the Aurora 2
task; averages taken over 0, 5, 10, 15 and 20 dB SNR.

Approach Sub. Bab. Car Exh. Avg
SFE 68.06 44.74 59.97 68.73 60.37
AFE 88.83 84.82 90.82 88.69 88.29

MMSE0 76.90 72.93 79.68 76.07 76.40
MMSE1 80.19 72.56 84.28 82.43 79.87

UD0 78.74 75.96 81.71 76.75 78.29
UD1c 82.75 71.10 88.36 83.09 81.32
UD1 85.35 67.79 80.55 78.73 83.33

6 Conclusions
In this paper we have shown that uncertainty decoding is
a powerful concept to improve the robustness of speech
recognition towards a mismatch between training and test-
ing conditions. The key to success is, however, the esti-
mation of the posterior probability of the clean speech fea-
ture vector given the corrupted. We have shown for two
types of distortions, packet and thus feature vector losses
in the case of distributed speech recognition (DSR) and
additive environmental noise, how the posterior can be es-
timated. While in the first case (DSR), uncertainty decod-
ing greatly improved the immunity of the recognition en-
gine towards lost feature vectors, in the second, current
approaches hardly achieve the performance of the ETSI
Advanced Front End. Indeed, the second seems to be the
harder problem, one reason being that the effect of addi-
tive noise on cepstral features is highly non-linear. More
research and, hopefully, insight is needed to better under-
stand the shortcomings of today’s approaches.
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