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Abstract
In this paper we propose a novel iterative speech feature en-
hancement and recognition architecture for noisy speech recog-
nition. It consists of model-based feature enhancement em-
ploying Switching Linear Dynamical Models (SLDM), a hid-
den Markov Model (HMM) decoder and a state mapper, which
maps HMM to SLDM states. To consistently adhere to a
Bayesian paradigm, posteriors are exchanged between these
processing blocks. By introducing the feedback from the recog-
nizer to the enhancement stage, enhancement can exploit both
the SLDMs ability to model short-term dependencies and the
HMMs ability to model long-term dependencies present in the
speech data. Experiments have been conducted on the Aurora
II database, which demonstrate that significant word accuracy
improvements are obtained at low signal-to-noise ratios.
Index Terms: speech recognition, speech feature enhancement,
SLDM

1. Introduction
Robust speech recognition in noisy environments remains a
tough research challenge while at the same time being of great
practical importance. Provisions for noise robustness have been
attempted at various stages of the recognizer. Among the most
promising approaches are model-based speech feature enhance-
ment techniques, of which the Vector Taylor Series approach is
one of the best known examples [1]. More recently, Droppo and
Acero have proposed the use of a Switching Linear Dynamical
Model (SLDM) for the enhancement of noisy speech features
in the cepstral domain, where the Gaussian Pseudo Bayesian al-
gorithm of order one (GPB1) is used for inference [2]. Similar
methods have been proposed by [3] and [4]. In these approaches
the enhancement of the feature vectors and the actual speech
recognition were considered to be two strictly separated stages.
In a recent work of Faubel and Wölfel this strict separation was
removed [5]. They proposed to track the noise with a particle
filter, while the distribution of the speech was determined by the
current phoneme in the recognizer.

Rosti and Gales have investigated whether the HMM in the
recognizer can be replaced by a SLDM, where the inference
in the SLDM is either performed probabilistically by Gibbs
sampling or deterministically by GPB or other approaches [6].
Overall they came to the conclusion that the use of an HMM
in the recognizer is more suitable than the application of an
SLDM.

While a well-known strength of the HMM is the modeling
of non-linear long-term dependencies, a SLDM is more suitable
for modeling short-term dependencies as it does not suffer from
the conditional independence assumption used in HMMs. On
the other hand finding the optimal state sequence is computa-
tionally intractable for the SLDM. It therefore seems promising
to look for approaches, where the two, SLDM for feature en-

hancement and HMM for recognition, can benefit from each
other’s complementary modeling strength. While it was shown
before that the HMM recognizer improves by SLDM-based fea-
ture enhancement, we show in this paper that the SLDM fea-
ture enhancement can in turn benefit from the HMMs ability to
model long-term dependencies. We propose an enhancement
and recognition architecture, where posterior probabilities are
iteratively exchanged among the components. This approach is
reminiscent of iterative receiver architectures used in telecom-
munications.

This paper is organized as follows. In the next section we
describe the baseline SLDM proposed in [2]. In section 3 the
iterative speech feature enhancement and recognition is consid-
ered. Section 4 is concerned with noise estimation. We present
experimental results in section 5 and finish with some conclu-
sions in section 6.

2. Baseline
The front-end processing in our system is very similar to the
Switching Linear Dynamic Model (SLDM) proposed in [2]. For
this reason it is described only briefly in the following.

The feature enhancement takes place in the cepstral do-
main. The clean speech feature vector with 13 correlated com-
ponents is denoted by xt. It’s dynamics are modeled with a
SLDM according to the state equation

xt = Ast
xt−1 + bst

+ vt,vt ∝ N (0,Cst
) (1)

where the model parameters Ast
, bst

and Cst
depend on the

discrete state st. In [2] a time dependence among the continu-

Figure 1: Graphical model underlying the SLDM

ous xt is assumed, but not among the discrete state variables st.
This can be expressed either by the graphical model in figure 1
or by the equations

p(xt, st|xt−1) = N (xt;Ast
xt−1 + bst

, Cst
)P (st)

p(xT
1 , s

T
1 ) = p(x1, s1)

T
Y

t=2

p(xt, st|xt−1)
(2)

For training standard EM techniques can be used. The Zero
Variance Model (ZVM) which was introduced in [7] is applied
as observation model. In this approach for each SLDM state s



an SNR variable rs = xs−n is iteratively enhanced in order to
obtain the updated feature vector xs. For simplicity the frame
index t is omitted here. The clean speech vector xs, the noise
n and the SNR variable rs are assumed to be Gaussians with
means µx

s , µn, µr
s respectively and covariance matrices σx

s , σn,
σr

s . The moments of rs are estimated from the observation vec-
tor y according to the formulas
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where the vector f0
s and the matrix F0

s represent the first two
terms in the Taylor series expansion of f(r) = C ln(eDr + 1)
around the state-conditional point r = r0:

f
0
s = C ln(eDr

0
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F
0
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1 + e−Dr0
s

)D
(4)

with the discrete cosine transform (DCT) matrix C and its
pseudo-inverse matrix D = C−1. The parameters of the con-
ditional posterior for a state s are computed to be

E[x|y, s] ≈ y − ln(eµr

s + 1) + µ
r
s

Var[x|y, s] ≈ σ
r
s

(5)

The posterior estimation of p(xt|y
t
1) under the noisy speech

feature sequence yt
1 = y1, . . . ,yt with the SLDM is com-

putationally intractable because for M different values of the
state variable st there are M t possible state sequences for t
frames of speech so that a suitable approximation is required.
A very common approximation which is applied in [2] is the
generalized pseudo-Bayesian (GPB) algorithm. The idea is
to collapse the posterior to Mr Gaussian components for a
GPB of order r so that the inference complexity is reduced
from M t to Mr . For each frame of data, three steps are per-
formed in order: collapse, predict and observe. In the collapse
step the Mr Gaussian components which represent the distri-
butions p(xt−1|y

t−1
1 , st−1

t−r+1) are collapsed to Mr−1 compo-
nents. This is achieved by the marginalization

p(xt−1|y
t−1
1 , s

t−1
t−r+1) ≈

X

st−r

p(xt−1|y
t−1
1 , s

t−1
t−r)P (st−r).

(6)
In the prediction step the remaining hypotheses are branched
out M times, once for each possible state st.

p(xt|y
t−1
1 , s

t
t−r+1)

=

Z

p(xt − 1|yt−1
1 , s

t−1
t−r+1)p(xt|xt−1, st)dxt−1

(7)

Finally the current observation yt is incorporated in the ob-
serve step. For this purpose the observation model is applied
to perform the measurement update p(xt|y

t−1
1 , st

t−r+1) →
p(xt|y

t
1, s

t
t−r+1). In [2] the prior distribution P (st) for the

hidden variables comes from the output of the observe step.

3. Iterative Feature Enhancement and
Recognition

It is computationally intractable to optimize the model prob-
ability P (st|y

T
1 ) conditioned on the measurements y1 . . .yT

of a complete utterance in the approach described in section
2. In contrast, the state probabilities P (qt|y

T
1 ) of the HMM

states qt, t = 1, . . . , T , of the recognizer can be calculated by
a forward-backward algorithm. Due to the left-to-right HMM
topology with a restricted set of transitions, the HMM is able to
model long-term dependencies, i.e. P (qt|y

T
1 ) is influenced by

P (qτ |y
T
1 ) even for large |t− τ |. If a long-span language model

is used the “dependency time” is further extended. While the
HMM is more suitable to model nonlinear long-term dependen-
cies, LDMs are more appropriate to represent linear short-term
correlations, see eq. (2).

In order to exploit the long-term dependencies captured by
the HMM in the enhancement stage we calculate the SLDM
probabilities P (st|y

T
1 ) as a function of the HMM probabilities

P (qt|y
T
1 ), thus closing an iteration loop. The resulting system

for iterative speech feature enhancement and recognition is de-
picted in figure 2.
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Figure 2: Iterative speech feature enhancement and recognition

First, the noisy speech feature vectors are enhanced at the
SLDM stage, which delivers the posterior probability p(xt|y

t
1)

of the clean feature xt. In the first iteration there exists no HMM
output, so the upper part of figure 2 is left out. The feature
enhancement reduces to the one used in [2], where the state
probabilities P (st) come out of the observe step. The HMM
decoder provides the state posterior probabilities P (qt|y

T
1 ),

t = 1, . . . , T by the forward-backward algorithm. Alterna-
tively, a Viterbi decoder can be employed where a single best
state sequence is calculated. An approximate posterior may also
be computed if the decoder outputs an N-best list.

In order to employ uncertainty decoding the HMM obser-
vation probability p(xt|qt) is replaced by [10]

Z

p(xt|qt)
p(xt|y

t
1)

p(xt)
dxt. (8)

In case of yt = xt (absence of noise) the posterior
p(xt|y

t
1) becomes a Dirac delta impulse, and (8) reduces to the

ordinary observation probability p(xt|qt) (the term p(xt) in the
denominator can then be dropped as it is a constant). In case of a
completely unreliable observations p(xt|y

t
1) tends to the prior

p(xt), as the observed feature becomes uninformative. Thus,
the observation probability tends to unity, which is equivalent
to a marginalization of that feature.

Since the posterior p(xt|y
t
1) is modeled as a Gaussian, the

integral (8) can be solved analytically. Note that unlike many
other formulations of uncertainty decoding the form in (8) al-
lows to employ posteriors which depend on the whole observed
feature vector sequence.

The purpose of the state mapping module is to map the
HMM state posteriors to SLDM state posteriors. Obviously
there is no direct equivalence between HMM and SLDM states,
because the HMM states correspond to stationary regions of the
speech signal while the SLDM states can be related to regions



with the same dynamics. However, due to the left-to-right topol-
ogy of the HMM model the HMM states are assigned to certain
positions in a word. It is clear that e.g. for HMM states at the
beginning of a word SLDM states with dynamic models for ris-
ing flanks are more probable, while for HMM states at the end
of a word decreasing flanks can be expected. A problem with
this approach is the great number of HMM states in realistic
speech recognition systems. It is unrealistic to employ an equal
number of LDMs due to limited training data and computation
time. For this reason we use only a small number of SLDM
states and learn the conditional probability P (st|qt) from clean
speech training data as follows. First we write

P̂ (s|q) =
P̂ (s, q)

P̂ (q)
. (9)

The numerator can be estimated from the posterior probabilities
of the states:

P̂ (s, q) =
X

t

P (st = s|qt = q, X)P (qt = q|X). (10)

where the summation is over all frames of the data base and X

denotes all feature vectors. The first term can be approximated
as follows

P (st|qt, X) ≈ P (st|xt, xt−1) ∝ p(xt|xt−1, st)P (st) (11)

The term P (qt = q|X) in (10) is given by the Baum-Welch
HMM training, or may be approximated by a hard decision

P (qt = q|X) ≈ δ(qt) =

(

1, if state qt is active in frame t

0, else
(12)

In a similar way we obtain the denominator of (9):

P̂ (q) =
X

t

P (qt = q|X). (13)

The posterior of the SLDM state to be used in the second
iteration of the speech feature enhancement is now obtained as
follows:

P (st|y
T
1 ) =

X

qt

p(st|qt)p(qt|y
T
1 ) (14)

where p(qt|y
T
1 ) can be obtained from a true forward-backward

recognizer. For a Viterbi-based HMM decoder, (14) simplifies
to

P (st|y
T
1 ) = P (st|q̂t) (15)

where q̂t is the optimal HMM state at time t found by the Viterbi
decoder. To give alternative state hypotheses a noticeable con-
tribution to the state mapping we used a heuristic, which is ex-
plained for the example of an HMM decoder, which outputs an
N-best list. Let (qT

1 )(n) denote the best state sequence of the
n-th best sentence. We then replaced (14) by

P (st|y
T
1 ) ∝

N
X

n=1

P (st|qt)(p(yT
1 |(q

T
1 )(n)))1/T (16)

Now the loop is closed and the second iteration of feature
enhancement and subsequent recognition can start. More than
two iterations, however, did not prove to be effective.

4. Feedback of HMM State Posteriors for
Noise Estimation

The HMM state probabilities P (qt|y
T
1 ) which are used in sec-

tion 3 for the estimation of the SLDM probabilities P (st|y
T
1 )

can also be applied for the calculation of a soft VAD variable

Psil =
X

qtεQsil

P (qt|y
T
1 ), (17)

where Qsil denotes the HMM states which correspond to si-
lence. The noise estimation is initialized with the first and last
10 frames of an utterance. Then, for each frame the noise esti-
mate is updated by

µnt
= (1 − αPsil)µnt−1

+ αPsilµ̃nt
, (18)

where α is a weighting coefficient which determines the influ-
ence of the current noise estimate µ̃nt

. It has been selected in
informal experiments to be 0.05. Note, that no update of the
noise estimate µnt−1

is carried out if Psil = 0. The instanta-

neous noise estimate µ̃nt
is computed by µ̃

(sil)
nt

= yt in speech
pauses, and by µ̃

(speech)
nt

= yt − ln(1 + e−µrt ) during speech
activity [7]. The latter can be estimated after the measurement
update with the SLDM, eq. (3). With the soft silence indicator
(17) we thus obtain

µ̃nt
= Psilµ̃

(sil)
nt

+ (1 − Psil)µ̃
(speech)
st

= yt − (1 − Psil) ln(1 + e
−µrt )

(19)

which is the instantaneous noise estimate employed in eq. (18).

5. Experimental results
The experiments were performed on test set A of the AU-
RORA2 database [11] with clean speech training data. To be
able to compare our results with [7], from which we adopted
the observation model, we modified the ETSI standard front-
end extraction [12] in the same manner as there by replacing the
energy feature with c0 and using the magnitude squared power
spectral density rather than the spectral magnitude as the input
of the Mel-frequency filter-bank. In the first set of experiments
the noise was estimated from the first and last 10 frames of each
sentence. The overall recognition accuracy was averaged over
all noise conditions at SNR levels between 0dB and 20dB. The
speech recognition with the described standard frontend (SFE)
yields an overall recognition accuracy of 60.37% (table 1). The

Table 1: Word accuracy on testset A of the AURORA2 database
at different input SNR levels

SFE SLDM SLDM-
FB1

SLDM-
FB2

SLDM-
FBopt

Clean 99.67% 99.52% 99.69% 99.6% 99.61%
20dB 99.29% 98.01% 98.04% 98.11% 98.63%
15dB 87.83% 95.6% 95.22% 95.49% 96.99%
10dB 67% 89.28% 88.66% 89.3% 92.44%
5dB 36.44% 73.74% 74.59% 75.79% 82.73%
0dB 14.32% 42.7% 47.37% 48.37% 59.42%
-5dB 6.58% 15.09% 19.29% 19.3% 29.5%
Avg. 60.37% 79.87% 80.77% 81.41% 86.04%



baseline SLDM which is described in section 2 leads to an ac-
curacy of 79.87%, if M = 16 LDMs are used. An overall accu-
racy of 80.77% is achieved with the feedback of the HMM state
probabilities (SLDM-FB1). The improvement is larger for low
SNR levels, while the accuracy at higher SNR levels is hardly
increased. By coupling back more than one hypothesis accord-
ing to eq. (16) a performance of 81.41% could be achieved
(SLDM-FB2). A multi-hypotheses approach where the state
probabilities P (qt) are calculated with the forward-backward
algorithm, eq. (14), seems to be more adequate. However so far
in our experiments the probabilities P (qt) were almost one for
one state and zero for all the other states at time instance t.

In order to obtain an upper bound on the performance
achievable with our state mapping approach, the HMM states
were calculated from clean speech data and afterwards mapped
to SLDM states (SLDM-FBopt). Table 1 shows that with the
same noisy input data but with optimal state mapping resulting
from the correct HMM state sequence a significant improve-
ment of the recognition accuracy can be obtained.

In table 2 the results are given for the different noise types:
the average recognition accuracies for the SFE without feature
enhancement, the baseline SLDM and the proposed method
SLDM-FB2 at different noise conditions. SLDM-FB2 yields
improvements compared to SLDM at three noise conditions. At
babble noise the recognition rate is slightly decreased. Further

Table 2: Word accuracy on testset A of the AURORA 2 database
at different noise conditions

Subway Babble Car Exhib. Avg.

SFE 68.06% 45.87% 58.34% 64.76% 60.37%
SLDM 80.19% 72.56% 84.28% 82.43% 79.87%
SLDM-
FB2

82.25% 72.15% 87.21% 84.03% 81.41%

SLDM-
FBN

82% 76.27% 85.3% 84.29% 81.96%

the results for the noise estimation method (SLDM-FBN) de-
scribed in section 4 are depicted in table 2. An overall perfor-
mance of 81.96% is achieved compared to 81.41% with noise
estimation from the first and last 10 frames (SLDM-FB1). How-
ever the results strongly depend on the background noise. While
for the nonstationary babble noise an improvement of 4.12% is
obtained, the recognition rates for the car noise are even de-
creased by 1.91% and the results for the subway and exhibition
noise are only slightly changed.

6. Conclusions

In this paper speech feature enhancement with an SLDM and
speech recognition with an HMM decoder were combined in
a new way. By employing a state mapping to feedback poste-
rior probabilities from the recognizer to the enhancement stage,
feature enhancement can benefit from the ability of HMMs to
model long-term dependencies in the data. With this approach
significant word accuracy gains were achieved at low signal-to-
noise power ratios. Further, the HMM state posterior probabili-
ties were shown to be useful for noise estimation under nonsta-
tionary background conditions.
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