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Abstract

In this paper we investigate the problem of identifying aod |
calizing speakers with distant microphone arrays, thusrekt
ing the classical speaker diarization task to answer thstigune
“who spoke wherand wher&. We consider a streaming au-
dio scenario, where the diarization output is to be gendrizate
realtime with as low latency as possible. Rather than cagryi
out the individual segmentation and classification tasgedsh
detection, change detection, gender/speaker classifijate-
quentially, we propose a simultaneous segmentation asdicla
fication by applying a Viterbi decoder. It uses a transiticatmix
estimated online from position information and speakengea
hypotheses, instead of fixed transition probabilites. Bhisds
early hard decisions and is shown to outperform the seqlenti
approach.

Index Terms: speaker diarization, acoustic scene analysis,
Viterbi decoder

1. Introduction

Speaker diarization is the task of annotating an input audio
channel with information that attributes temporal regitimspe-
cific speakers [1]. There are three primary domains whiclke hav
been used for speaker diarization research: broadcastamews
dio, recorded meetings, and telephone conversations. llijsua
a batch processing scenario is considered, i.e. the coenplet
recording of the audio data is available at the beginnindnef t
diarization.

In this paper we are also concerned with speaker diariza-
tion; however under three distinct differences. First, we-c
sider an online scenario, where an audio stream has to be seg-
mented and classified on the fly with as little latency as jpbssi
Only a maximum latency of a few seconds is tolerable. For this
reason, neither iterative nor multi-stage batch proceslaen
be used in order to avoid long system delays. The second major
difference is that, besides the classical speaker diaizatfor-
mation, answering “who spoke when”, we are also interested i
the position of the speaker in the room. To this end we assume
that microphone array data are available, from which sgeake
position information will be derived. While on the one hahd t
use of wall-mounted distant microphones leads to poor sigha
quality (low signal-to-noise ratio, reverberation), treewof po-
sition information can greatly improve the speaker change d
tection accuracy, if different speakers are assumed to Hé-in
ferent spatial locations [2]. The third difference is thatlike in
a traditional speaker diarization setup, the number oflsgrsa
is known in advance and models to carry out speaker identifica
tion are available. This assumption is reasonable for egtin
in an intelligent home environment, which is considereceher
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since the system is meant to identify family members.

Localizing and identifying speakers on the fly can be used
in intelligent environments to automatically select thestrap-
propriate input/output device based on position infororati
and to adapt interfaces to user profiles and preferences thac
user/speaker is identified, as is investigated within thegdm
project (Ambient intelligence for the networked home eowir
ment, IST 004182, [3]). Another application is advanceckuid
conferencing with automatic camera steering, microph@ae s
lection and metadata generation.

In our approach for online speaker diarization we carry out
segmentation and classification in parallel rather thamieeq
tially in order to avoid early unfavorable hard decisionjch
cannot be corrected lateron due to the on the fly processimg co
sidered here. We employ a Hidden Markov Model (HMM),
where the states represent speakers. Thus speaker infommat
from the speaker identification module is taken as staterodse
tion probabilities, while speaker change information,aited
from BIC and the microphone array is used to obtain state tran
sition probabilities. Diarization information is outputafixed
maximum latency using partial traceback at the Viterbi dieco
While the integrated approach in [4] uses fixed state tramsit
probabilities and focuses on iteratively growing the HMM in
the presence of an initially unknown number of speakers, we
employ time-variant transition probabilites, which areaibed
from speaker change information, and we assume that the num-
ber of speakers is known.

In the next section we outline the individual knowledge
sources used in the diarization process. Section 3 desdtibe
Hidden Markov Model on which the Viterbi algorithm, given in
section 4, operates. Experimental results are presentsetin
tion 5, and we finish with some conclusions drawn in section
6.

2. Knowledge sources

Figure 1 gives an overview of the overall system architectur
and the knowledge sources used, which are speaker change
information from the Bayesian Information Criterion (BIC)
speaker position derived from the microphone array, voize a
tivity information (VAD), and the Gaussian mixture model
(GMM) for speaker identification. Each knowledge source is
modeled probabilistically, as described in the following.
Speaker change information from location informatiokh
Filter-and-Sum Beamformer (FSB) using a blind adaptation
method [5] delivers an estimate of the Direction-of-Artiva
(DoA) as a byproduct of speech enhancement. In the case of
multiple, distributed arrays, even the speaker positiam loa
estimated in Cartesian coordinates. Every 10ms a position (
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Figure 1:Overall system architecture and knowledge sources.

direction) estimate is computed. The featuf®* to be used

in the diarization task is the variance of the position eatan
within a time window of width 0.5s. From training data we
estimate the parameters of the Gausgiarf°|c), where the
binary variablec indicates the presence or absence of a speaker
change in that interval.

Speaker change information from BI@e compute feature
vectors from the audio signal at the output of the FSB using
the ETSI AFE advanced feature extraction front end [6]. Next
BIC values are obtained from the feature vectors within @ sli
ing window of 0.6s width [7, 8]. The feature’* to be subse-
quently used is the variance of the BIC values within a window
of 0.5s.p(2"“|c) is again modeled as a Gaussian with parame-
ters estimated on the training data.

Speaker id information from GMMspeaker identification
is based on a Gaussian Mixture Model. The GM*¢|s) for
each speakey is obtained from a universal background model
(64 Gaussians, diagonal covariance matrix) by using Bayesi
adaptation on speaker-specific training data (approx. 3min
speaker). The feature vectof’® consists of the 12 MFCCs
ci1,...,c12 from the ETSI AFE, their first and second order
derivatives, and a voicedness feature [9] and its first ane se
ond order derivatives.

Voice activity information from VADNe employ an energy-
based voice activity detector or alternatively the ETSI XAF
voice activity detector. It delivers a soft output speeadtlida-
tor P(speechz’*?), which can assume any value between 0

(absence of speech with high confidence) and 1 (presence of

speech with high confidence).

We also experimented with a gender classifier to further
enhance the speaker identification. However, the perfoteman
gain was marginal and therefore we decided to leave it out in
the following.

3. Hidden Markov Model

Figure 2 displays the ergodic HMM used for speaker diariza-
tion. It shows a scenario with three speakers. The number
of hidden states is equal to the number of speakers (which is
assumed to be known a priori), plus one state for “silence”.
Note that we do not carry out a speech activity detection and
frame dropping upfront, but propagate the soft VAD output to
the Viterbi decoder, again to avoid early hard decisions.

The observation probability of each state is given by the
GMM. While the GMM was trained on speech frames only, the
inputz**? to be classified may also contain non-speech frames,
as frames classified as non-speech are not eliminated ptioe t
HMM decoder. As a consequence the GMM likelihood must
be multiplied by the probability of the frame being a speech
frame, resulting in the following observation probabilftyr a
states = j representing a speaker:

bj(z(k)) = p(«™(k)|s = j)P(speechz"*"); j : spk (1)
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Figure 2:Hidden Markov Model for speaker diarization

If s denotes the “silence” state, the observation probabiity i

modified to
m@w»=Mﬁ%mw=wu—P@mmm”%xyig
where an average GMM-score is takenpés®*|s = sil).

The transition probabilities are formed by the speaker
change information. Led(k — 1) = j ands(k) = i. We define
the binary random variable k) to be one if there is a speaker
change from timé& — 1 to k (i.e. i # j) and zero else. The
transition probability between “speaker” states (i.e. lading
the “silence” state) is then given y(c(k)|z?°* (k), 2% (k)).
Assuming that:?°® andz"*° are statistically independent, we
find

o (k. ey — PR, 2 ()le(k) Ple(k))
p(c(k)] (k), (k) p(zros (k), zbie (k)

_ (e (k)|e(k) P(c(k)) p(a”(k)|c(k) P(c(k) 1
p(zres(k)) p(z*(k)) P(C(%’

If we assume thaP(c(k)) is constant for alk(k), the term can
be further simplified and we obtain the transition score

_ o (k)le(k)  p(a"c(k)|c(k))
2o plares(k)le) Yo plabie(k)|e)

The “silence” state needs again special treatment. A transi
tion to the silence state is assigned the probabjityz®*),

and a loop in the “silence state” is assigndd— p(c|z**)).

The reason for the absence of the position dependent feature
is that a transition to silence obviously does not corredpon

a Direction-of-Arrival or position change of the input san
Note that the transition score need not be a probabilitythiear
note that the transition scores are time variant.

ai;(k) 4

4. Viterbi decoder

By unfolding the state transition diagram of Figure 2 overdi
a trellis diagram is obtained, on which the Viterbi algamith



operates to deliver the single best state sequence thrbadgh t
trellis, given the (joint) observations(1), ..., z(K):

K
§{( = argmax Z (logbj(z(k)) + klogai;(k)). (5)

S1 k=1

It is known from the literature that minimum length congttai
and heuristic smoothing rules may be applied to suppress ex-
cessive state switching [1]. They are based on the assumptio
that every speaker speaks at least for a small time period, pr
ducing more than just a few observation vectors. Here wedavoi
unwanted state oscillations by using a heuristic weigHtatpr
&, which controls the importance of the transition scoretieda
to the observation score.

To guarantee a latency smaller than a given maximum
value, partial traceback is implemented and initiatedegec-
ond from the state with the currently best score. The tradeba
outputs the unique part of the state history and forces gpubut
at least after a maximum time delayof.x. However, an unan-
imous state sequence is typically found already after atshor
delay.

Sofar the speaker position information information hay onl
been used to find speaker changes. However, the odfput
of the Viterbi-based diarization can now be combined witn th
speaker position information, to obtain the augmentedziiar
tion information “who spoke when and where”. Once speak-
ers have been assigned to positions, the position of inaid
speakers can be tracked over time, e.g. by filtering the posi-
tion estimates of each speaker using a state space mode! of th
movements.

5. Experimental results

The problem under consideration in this paper is differeminf

the classical speaker diarization task, as was desribdi@rear
The databases used in the DARPA EARS Rich Transcription
effort cannot be used since they do not contain microphone ar
ray data, from which position information could be extracte
The databases compiled within the CHIL project include mi-
crophone array data. However, the multi-channel recosding
mainly consist of lecture recordings, where the same spéske
active for more than 90% of the time, which is inappropriate f
meaningful speaker change detection experiments [10].

We therefore decided to use a self compiled database for
our experiments. The database contains abguiiours of spo-
ken texts from a total of 5 male and 5 female speakers, redorde
by a linearly arranged microphone arr@ynicrophones; inter-
microphone distance dftm) at2.8m distance from the speak-
ers. More details on the database can be found in [2]. For the
experiments reported below the database was divided ie thre
subsets according to the average length of contiguous speak
segments: fast (belo@s), medium § —4s) and slow (more than
4s). The performance is measured by the speaker diarization e
ror rate (DER), which is the ratio of frames the detectededtat
bel (including silence) does not coincide with the groundkt
state label versus the total number of frames (no tolerdige)

To obtain an impression whether the individual components
of our system are state-of-the-art, we tested our speakatiid
fication software on recordings of the CHIL database, forclvhi
classification results of other laboratories were avadaild ob-
tained results comparable to those. The sliding-window BIC
algorithm used here is similar to [8], which was there shown
to deliver good results. Finally, the adaptive Filter-e8uin

Beamformer, from which the position information is obtaine
has been shown to deliver good performance in [11].

5.1. Ground-truth speaker segmentation

When the ground-truth speaker change points are known, the
diarization performance is limited by the performance & th
speaker identification software. This performance, dehate
“ground-truth change points” in Table 1, serves as a bendhma
for our system.

5.2. Sequential diarization

A first and very simplistic approach to diarization is to garr
out speaker recognition on a sliding window of fixed width and
assign the detected speaker label to the center frame ofithe w
dow. Figure 3 displays the DER as a function of the window
width. It comes to no surprise that the DER increases on the
databases with the shorter speaker segments.
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Figure 3:DER performance using fixed window size
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A common approach to diarization is to first detect speaker
changes with the Bayesian Information Criterion (BIC), and
then apply speaker recognition on the found segments. Sev-
eral variants of the BIC rule and related techniques have bee
proposed in the literature. We have chosen the metric decisi
rule, which is to our experience quite robust to varying aticu
environments and thus needs less calibration [2]. In Figure
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Figure 4:System performance using BIC

DER is shown against the BIC thresheldvhich effects the av-
erage length of the detected segments. A high thresholdgavo
longer segments. For the optimal valuepthis approach gives
slightly better results than the fixed window approach. How-
ever, good performance is obtained for a wider range of galue
for §, while in the fixed window approach the DER depends
strongly on the window width.



The first two results lines of Table 1 summarize these re-
sults: it contains the minimum DER of each curve of Figures 3
and 4. This DER performance is achieved if the optimal value
of the parameters window width and the BIC threshold are used
on each database.

| Speechduration | <2s [ 3—4s | >4s | Avg. |

Fixed window 29.00 | 15.14 | 9.10 | 14.21

BIC 28.76 | 13.91 7.94 | 12.98

Viterbi (Pos,BICx = 1) | 22.62 | 11.52 | 6.83 | 10.69
Viterbi (Fixedx = 5) 25.53 | 10.05 | 5.72 | 9.66
Viterbi (Posk = 7) 21.66 9.32 5.69 | 8.95
Viterbi (BIC,x = 7) 24.03 | 9.48 5.35 | 9.08
Viterbi (Pos,BICx = 7) | 22.80 | 6.80 4.27 | 7.05

[ Ground-truth change pt5 11.09 | 4.05 | 2.46 | 4.00 |

Table 1:Diarization error rates of different setups

5.3. Joint segmentation and classification

Our approach proposed in this paper carries out segmemtatio
and classification in one step using a Viterbi decoder. Table
contains the results for different variants: Combiningipos

and BIC information as described by eq. (4) gives good result
(“Viterbi (Pos,BICx = 1)"). The DER can even be further
reduced by weighting the contribution of the transitionrsco
relative to the observation score. For “Viterbi (Ros; 7)” only

the position feature is used to compute the transition s¢ore
while for “Viterbi (BIC,x = 7)” only the BIC information is
used, in both experiments we used-= 7.

Figure 5 shows the DER as a function of the weightee
eq. (5). Using the best value = 7, position and BIC in-
formation gives the best performance and clearly outper$or
the sequential approach and also the best Viterbi decodbr wi
fixed transition probabilities (“Viterbi (Fixed,= 5)"), see en-
try “Viterbi (Pos,BICx = 7)” in Table 1.

The performance of the Viterbi decoder also depends on
the allowed maximum delay..x, after which a traceback is
forced. This partial traceback is needed to adhere to tHe rea
time requirements of the system. In Figure 5 results foediit
delaysmmax are given, showing that with a maximum delay of
3s good results are achievable and that the performance degra-
dation is minor for delay$max > 2s.

6. Conclusions

In this paper we have presented an algorithm for parallel
speaker segmentation and classification based on an HMM,
where each state characterizes a speaker (or silence) and th
transitions model the changes between the speakers. Approp
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Figure 5: Diarization performance using Viterbi(Pos,BKJ,
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