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Abstract

In this paper we investigate the problem of identifying and lo-
calizing speakers with distant microphone arrays, thus extend-
ing the classical speaker diarization task to answer the question
“who spoke whenand where”. We consider a streaming au-
dio scenario, where the diarization output is to be generated in
realtime with as low latency as possible. Rather than carrying
out the individual segmentation and classification tasks (speech
detection, change detection, gender/speaker classification) se-
quentially, we propose a simultaneous segmentation and classi-
fication by applying a Viterbi decoder. It uses a transition matrix
estimated online from position information and speaker change
hypotheses, instead of fixed transition probabilites. Thisavoids
early hard decisions and is shown to outperform the sequential
approach.
Index Terms: speaker diarization, acoustic scene analysis,
Viterbi decoder

1. Introduction
Speaker diarization is the task of annotating an input audio
channel with information that attributes temporal regionsto spe-
cific speakers [1]. There are three primary domains which have
been used for speaker diarization research: broadcast newsau-
dio, recorded meetings, and telephone conversations. Usually,
a batch processing scenario is considered, i.e. the complete
recording of the audio data is available at the beginning of the
diarization.

In this paper we are also concerned with speaker diariza-
tion; however under three distinct differences. First, we con-
sider an online scenario, where an audio stream has to be seg-
mented and classified on the fly with as little latency as possible.
Only a maximum latency of a few seconds is tolerable. For this
reason, neither iterative nor multi-stage batch procedures can
be used in order to avoid long system delays. The second major
difference is that, besides the classical speaker diarization infor-
mation, answering “who spoke when”, we are also interested in
the position of the speaker in the room. To this end we assume
that microphone array data are available, from which speaker
position information will be derived. While on the one hand the
use of wall-mounted distant microphones leads to poor signal
quality (low signal-to-noise ratio, reverberation), the use of po-
sition information can greatly improve the speaker change de-
tection accuracy, if different speakers are assumed to be indif-
ferent spatial locations [2]. The third difference is that,unlike in
a traditional speaker diarization setup, the number of speakers
is known in advance and models to carry out speaker identifica-
tion are available. This assumption is reasonable for application
in an intelligent home environment, which is considered here,

since the system is meant to identify family members.
Localizing and identifying speakers on the fly can be used

in intelligent environments to automatically select the most ap-
propriate input/output device based on position information,
and to adapt interfaces to user profiles and preferences, once the
user/speaker is identified, as is investigated within the Amigo
project (Ambient intelligence for the networked home environ-
ment, IST 004182, [3]). Another application is advanced video
conferencing with automatic camera steering, microphone se-
lection and metadata generation.

In our approach for online speaker diarization we carry out
segmentation and classification in parallel rather than sequen-
tially in order to avoid early unfavorable hard decisions, which
cannot be corrected lateron due to the on the fly processing con-
sidered here. We employ a Hidden Markov Model (HMM),
where the states represent speakers. Thus speaker information
from the speaker identification module is taken as state observa-
tion probabilities, while speaker change information, obtained
from BIC and the microphone array is used to obtain state tran-
sition probabilities. Diarization information is output at a fixed
maximum latency using partial traceback at the Viterbi decoder.
While the integrated approach in [4] uses fixed state transition
probabilities and focuses on iteratively growing the HMM in
the presence of an initially unknown number of speakers, we
employ time-variant transition probabilites, which are obtained
from speaker change information, and we assume that the num-
ber of speakers is known.

In the next section we outline the individual knowledge
sources used in the diarization process. Section 3 describes the
Hidden Markov Model on which the Viterbi algorithm, given in
section 4, operates. Experimental results are presented insec-
tion 5, and we finish with some conclusions drawn in section
6.

2. Knowledge sources
Figure 1 gives an overview of the overall system architecture
and the knowledge sources used, which are speaker change
information from the Bayesian Information Criterion (BIC),
speaker position derived from the microphone array, voice ac-
tivity information (VAD), and the Gaussian mixture model
(GMM) for speaker identification. Each knowledge source is
modeled probabilistically, as described in the following.

Speaker change information from location information. A
Filter-and-Sum Beamformer (FSB) using a blind adaptation
method [5] delivers an estimate of the Direction-of-Arrival
(DoA) as a byproduct of speech enhancement. In the case of
multiple, distributed arrays, even the speaker position can be
estimated in Cartesian coordinates. Every 10ms a position (or
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Figure 1:Overall system architecture and knowledge sources.

direction) estimate is computed. The featurexpos to be used
in the diarization task is the variance of the position estimates
within a time window of width 0.5s. From training data we
estimate the parameters of the Gaussianp(xpos|c), where the
binary variablec indicates the presence or absence of a speaker
change in that interval.

Speaker change information from BIC. We compute feature
vectors from the audio signal at the output of the FSB using
the ETSI AFE advanced feature extraction front end [6]. Next,
BIC values are obtained from the feature vectors within a slid-
ing window of 0.6s width [7, 8]. The featurexbic to be subse-
quently used is the variance of the BIC values within a window
of 0.5s.p(xbic|c) is again modeled as a Gaussian with parame-
ters estimated on the training data.

Speaker id information from GMM. Speaker identification
is based on a Gaussian Mixture Model. The GMMp(xsid|s) for
each speakers is obtained from a universal background model
(64 Gaussians, diagonal covariance matrix) by using Bayesian
adaptation on speaker-specific training data (approx. 3min/
speaker). The feature vectorxsid consists of the 12 MFCCs
c1, . . . , c12 from the ETSI AFE, their first and second order
derivatives, and a voicedness feature [9] and its first and sec-
ond order derivatives.

Voice activity information from VAD. We employ an energy-
based voice activity detector or alternatively the ETSI XAFE
voice activity detector. It delivers a soft output speech indica-
tor P (speech|xvad), which can assume any value between 0
(absence of speech with high confidence) and 1 (presence of
speech with high confidence).

We also experimented with a gender classifier to further
enhance the speaker identification. However, the performance
gain was marginal and therefore we decided to leave it out in
the following.

3. Hidden Markov Model
Figure 2 displays the ergodic HMM used for speaker diariza-
tion. It shows a scenario with three speakers. The number
of hidden states is equal to the number of speakers (which is
assumed to be known a priori), plus one state for “silence”.
Note that we do not carry out a speech activity detection and
frame dropping upfront, but propagate the soft VAD output to
the Viterbi decoder, again to avoid early hard decisions.

The observation probability of each state is given by the
GMM. While the GMM was trained on speech frames only, the
inputxsid to be classified may also contain non-speech frames,
as frames classified as non-speech are not eliminated prior to the
HMM decoder. As a consequence the GMM likelihood must
be multiplied by the probability of the frame being a speech
frame, resulting in the following observation probabilityfor a
states = j representing a speaker:

bj(x(k)) = p(xsid(k)|s = j)P (speech|xvad); j : spk (1)
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Figure 2:Hidden Markov Model for speaker diarization

If s denotes the “silence” state, the observation probability is
modified to

bj(x(k)) = p(xsid(k)|s = j)(1 − P (speech|xvad)); j : sil
(2)

where an average GMM-score is taken asp(xsid|s = sil).
The transition probabilities are formed by the speaker

change information. Lets(k− 1) = j ands(k) = i. We define
the binary random variablec(k) to be one if there is a speaker
change from timek − 1 to k (i.e. i 6= j) and zero else. The
transition probability between “speaker“ states (i.e. excluding
the “silence” state) is then given byp(c(k)|xpos(k), xbic(k)).
Assuming thatxpos andxbic are statistically independent, we
find

p(c(k)|xpos(k), xbic(k)) =
p(xpos(k), xbic(k)|c(k))P (c(k))

p(xpos(k), xbic(k))

=
p(xpos(k)|c(k))P (c(k))

p(xpos(k))

p(xbic(k)|c(k))P (c(k))

p(xbic(k))

1

P (c(k))
.

(3)

If we assume thatP (c(k)) is constant for allc(k), the term can
be further simplified and we obtain the transition score

aij(k) =
p(xpos(k)|c(k))

P

c′
p(xpos(k)|c′)

·
p(xbic(k)|c(k))

P

c′
p(xbic(k)|c′)

(4)

The “silence” state needs again special treatment. A transi-
tion to the silence state is assigned the probabilityp(c|xbic),
and a loop in the “silence state” is assigned(1 − p(c|xbic)).
The reason for the absence of the position dependent feature
is that a transition to silence obviously does not correspond to
a Direction-of-Arrival or position change of the input signal.
Note that the transition score need not be a probability. Further
note that the transition scores are time variant.

4. Viterbi decoder
By unfolding the state transition diagram of Figure 2 over time
a trellis diagram is obtained, on which the Viterbi algorithm



operates to deliver the single best state sequence through that
trellis, given the (joint) observationsx(1), . . . , x(K):

ŝ
K
1 = argmax

sK

1

K
X

k=1

(log bj(x(k)) + κ log aij(k)) . (5)

It is known from the literature that minimum length constraints
and heuristic smoothing rules may be applied to suppress ex-
cessive state switching [1]. They are based on the assumption,
that every speaker speaks at least for a small time period, pro-
ducing more than just a few observation vectors. Here we avoid
unwanted state oscillations by using a heuristic weightingfactor
κ, which controls the importance of the transition score relative
to the observation score.

To guarantee a latency smaller than a given maximum
value, partial traceback is implemented and initiated every sec-
ond from the state with the currently best score. The traceback
outputs the unique part of the state history and forces an output
at least after a maximum time delay ofτmax. However, an unan-
imous state sequence is typically found already after a shorter
delay.

Sofar the speaker position information information has only
been used to find speaker changes. However, the outputŝK

1

of the Viterbi-based diarization can now be combined with the
speaker position information, to obtain the augmented diariza-
tion information “who spoke when and where”. Once speak-
ers have been assigned to positions, the position of individual
speakers can be tracked over time, e.g. by filtering the posi-
tion estimates of each speaker using a state space model of the
movements.

5. Experimental results
The problem under consideration in this paper is different from
the classical speaker diarization task, as was desribed earlier.
The databases used in the DARPA EARS Rich Transcription
effort cannot be used since they do not contain microphone ar-
ray data, from which position information could be extracted.
The databases compiled within the CHIL project include mi-
crophone array data. However, the multi-channel recordings
mainly consist of lecture recordings, where the same speaker is
active for more than 90% of the time, which is inappropriate for
meaningful speaker change detection experiments [10].

We therefore decided to use a self compiled database for
our experiments. The database contains about1.5 hours of spo-
ken texts from a total of 5 male and 5 female speakers, recorded
by a linearly arranged microphone array (6 microphones; inter-
microphone distance of5cm) at2.8m distance from the speak-
ers. More details on the database can be found in [2]. For the
experiments reported below the database was divided in three
subsets according to the average length of contiguous speaker
segments: fast (below2s), medium (3−4s) and slow (more than
4s). The performance is measured by the speaker diarization er-
ror rate (DER), which is the ratio of frames the detected state la-
bel (including silence) does not coincide with the ground-truth
state label versus the total number of frames (no tolerance)[1].

To obtain an impression whether the individual components
of our system are state-of-the-art, we tested our speaker identi-
fication software on recordings of the CHIL database, for which
classification results of other laboratories were available and ob-
tained results comparable to those. The sliding-window BIC
algorithm used here is similar to [8], which was there shown
to deliver good results. Finally, the adaptive Filter-and-Sum

Beamformer, from which the position information is obtained,
has been shown to deliver good performance in [11].

5.1. Ground-truth speaker segmentation

When the ground-truth speaker change points are known, the
diarization performance is limited by the performance of the
speaker identification software. This performance, denoted as
“ground-truth change points” in Table 1, serves as a benchmark
for our system.

5.2. Sequential diarization

A first and very simplistic approach to diarization is to carry
out speaker recognition on a sliding window of fixed width and
assign the detected speaker label to the center frame of the win-
dow. Figure 3 displays the DER as a function of the window
width. It comes to no surprise that the DER increases on the
databases with the shorter speaker segments.
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Figure 3:DER performance using fixed window size

A common approach to diarization is to first detect speaker
changes with the Bayesian Information Criterion (BIC), and
then apply speaker recognition on the found segments. Sev-
eral variants of the BIC rule and related techniques have been
proposed in the literature. We have chosen the metric decision
rule, which is to our experience quite robust to varying acoustic
environments and thus needs less calibration [2]. In Figure4
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Figure 4:System performance using BIC

DER is shown against the BIC thresholdδ, which effects the av-
erage length of the detected segments. A high threshold favors
longer segments. For the optimal value ofδ, this approach gives
slightly better results than the fixed window approach. How-
ever, good performance is obtained for a wider range of values
for δ, while in the fixed window approach the DER depends
strongly on the window width.



The first two results lines of Table 1 summarize these re-
sults: it contains the minimum DER of each curve of Figures 3
and 4. This DER performance is achieved if the optimal value
of the parameters window width and the BIC threshold are used
on each database.

Speech duration < 2s 3 − 4s > 4s Avg.

Fixed window 29.00 15.14 9.10 14.21
BIC 28.76 13.91 7.94 12.98

Viterbi (Pos,BIC,κ = 1) 22.62 11.52 6.83 10.69
Viterbi (Fixed,κ = 5) 25.53 10.05 5.72 9.66
Viterbi (Pos,κ = 7) 21.66 9.32 5.69 8.95
Viterbi (BIC,κ = 7) 24.03 9.48 5.35 9.08

Viterbi (Pos,BIC,κ = 7) 22.80 6.80 4.27 7.05

Ground-truth change pts 11.09 4.05 2.46 4.00

Table 1:Diarization error rates of different setups

5.3. Joint segmentation and classification

Our approach proposed in this paper carries out segmentation
and classification in one step using a Viterbi decoder. Table1
contains the results for different variants: Combining position
and BIC information as described by eq. (4) gives good results
(“Viterbi (Pos,BIC,κ = 1)”). The DER can even be further
reduced by weighting the contribution of the transition score
relative to the observation score. For “Viterbi (Pos,κ = 7)” only
the position feature is used to compute the transition scores,
while for “Viterbi (BIC,κ = 7)” only the BIC information is
used, in both experiments we usedκ = 7.

Figure 5 shows the DER as a function of the weightκ, see
eq. (5). Using the best valueκ = 7, position and BIC in-
formation gives the best performance and clearly outperforms
the sequential approach and also the best Viterbi decoder with
fixed transition probabilities (“Viterbi (Fixed,κ = 5)”), see en-
try “Viterbi (Pos,BIC,κ = 7)” in Table 1.

The performance of the Viterbi decoder also depends on
the allowed maximum delayτmax, after which a traceback is
forced. This partial traceback is needed to adhere to the real-
time requirements of the system. In Figure 5 results for different
delaysτmax are given, showing that with a maximum delay of
3s good results are achievable and that the performance degra-
dation is minor for delaysτmax ≥ 2s.

6. Conclusions

In this paper we have presented an algorithm for parallel
speaker segmentation and classification based on an HMM,
where each state characterizes a speaker (or silence) and the
transitions model the changes between the speakers. Appropri-
ate observation and transition scores have been defined. The
system is shown to outperform a two-stage approach, where
first change detection is carried out and second speaker clas-
sification. The proposed method is particularly useful if itera-
tive approaches which employ first tentative segmentation and
clustering, which can later be refined by merging and resegmen-
tation, are not affordable due to tough latency requirements.

If microphone array recordings are available, as is assumed
here, evidence of speaker change can be further supported by
speaker position or Direction-of-Arrival information derived
from an adaptive beamformer. This further improves diariza-
tion performance.
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