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Abstract - In this paper we present the design of a particle filter for post
filtering instantaneous positioning estimates of GSM mobile terminals. The
instantaneous estimates are obtained by comparing signal power levels, which
are reported by the mobile terminal to the base station, with a database of
predictions using a novel statistically motivated similarity measure. Unlike
a simple Euclidian distance measure, the proposed scheme incorporates in-
herent information about signal power level measurements requested by the
serving base station but not reported by the mobile terminal. Furthermore,
we show how the Monte Carlo method of particle filtering helps to obtain
better position estimates and, surprisingly, also helps to reduce the compu-
tational complexity. Results are presented for real field data.

1 Introduction

Location based mobile telephony services, like automatic localization of emergency calls
or virtual travel guides, are predicted to have a high market potential. Also network
operators could benefit from location information e.g. for location-dependent billing or
enhanced hand-over strategies. In particular the regulations put forward by the FCC
on enhanced emergency calls [1] have incented major research efforts to obtain precise
position estimates of mobile terminals.

Whereas various other proposed localization methods like triangulation based or GPS
assisted approaches, ask for extensive modifications of the network infrastructure or the
mobile terminal hardware, database assisted positioning is compatible with existing mo-
bile terminals and the GSM network infrastructure. This pattern recognition approach
utilizes the location-dependency of signal parameters observed by the mobile terminal
such as signal power levels of neighboring base stations, and compares the measured pa-
rameter values (”fingerprints”) with those stored in a database, where every database
entry consists of measured or predicted values along with the position coordinates. Addi-
tionally, database assisted positioning is applicable in the whole cellular network coverage
area, even for indoor areas and in non line of sight scenarios, which normally cause prob-
lems when using triangulation based or GPS assisted approaches.

However, database assisted positioning suffers from limited accuracy. The accuracy of
better than 83m in 67% given in [3] seems to be overly optimistic, since the model



parameters have been optimized for the given test data. In [2] an accuracy better than
44m for 67% of all estimations has been reported. This excellent result, however, could
only be achieved by exploiting map information in addition to the comparison with a
database of measured signal power levels. In [4] it has been shown that the accuracy
of the database approach can be improved by using robust metrics that are insensitive
to variations of the measured signal power levels due to fading or shadowing. Also post
filtering using a state-space model of the mobile terminal movement can significantly
increase accuracy [5|. By using particle filtering for this purpose and evaluating data of
wheel speed sensors within ABS units positioning accuracies similar to GPS were reported
in [6].

The approach of database assisted positioning presented here is based on standard GSM
system signalling. Measurement reports of signal power levels are evaluated, which are
regularly transmitted in the Radio Subsystem Link Control, e.g. utilized when performing
hand-overs. Taking a pattern recognition approach, these measurements are compared
with a database (map) of predictions using a novel similarity measure. Then particle
filtering, which belongs to the family of randomized post filtering methods, was adopted to
smooth instantaneous position estimates over time. Using this approach, the probability
density function (PDF) of mobile terminal positions is approximated by a set of weighted
samples, the so-called particles.

In the next section we will give a brief introduction into the principle of database assisted
positioning and analyze the GSM signal power level measurement procedure, from which
we will derive a statistically motivated similarity measure in section . In section 4 the
principle of particle filtering will be presented and we will show how it can be applied to
the domain of database assisted positioning utilizing the presented similarity measure.
After the presentation of experimental results, a conclusion ends this paper.

2 Database assisted Positioning

Database assisted positioning (DAP) utilizes the location dependency of signal param-
eters like signal power levels (SPLs). To this end, a database of location dependent
parameters is required. This database contains K entries of the form

i, denotes the location of the k-th entry in 2D coordinates and s(¢y) is a vector of signal
parameters if the object of interest is located at /.

Positioning is carried out by comparing the measurement vector 4’(n), where n denotes
the discrete time, with all parameters s(f) stored in the database using a similarity
measure d(vy’(n),s(¢)). Then the location of the most similar entry is used as a position
estimate:

~

l(n) = arggmax d(v'(n),s(ly)). (2.2)

Here, the used database contains predicted SPLs of all together 107 GSM-900 and GSM-
1800 cells and cell sectors of the Vodafone Network in the area of Stuttgart, Germany.
These predictions were calculated using a COST-231 model by our colleagues of the



"Institut fir Hochfrequenztechnik” at the University of Stuttgart. The database covers
an area of 4,500m x 4,950m containing 223,969 locations in a regular grid with an element
spacing of 10m.

DAP faces several critical issues. The first one is the compilation and the maintenance
of the database, that can be very cost-intensive. Due to its size and for the ease of
maintenance, the database should be stored in a central place in the network resulting in
network-based positioning. The second issue is the necessity of an appropriate similarity
measure. The measure presented in this paper is based on a probabilistic model of
reported measurements, which was derived by analyzing the hand-over procedure, that
is part of the GSM Radio Subsystem Link Control. The last problem to be solved is an
appropriate post filtering method, since the instantaneous position estimates disregard
any constraints arising from the limited mobility of the mobile terminal.

2.1 GSM Measurement Procedure

In order to guarantee stable operation by performing hand-overs if necessary, the serving
base station (BTS) periodically requires feedback about the reception conditions at the
mobile terminal (MT) position when operating in ”dedicated mode”. Therefore, every
480ms a so-called network neighborhood list of Ng < 16 neighboring BTSs is trans-
mitted to the MT to initiate the measurement of the SPLs of their broadcast control
channels (BCCHs). Additionally, the MT will measure the SPL of the serving BTS.
Let the resulting internal measurement list of size Ng + 1 in the MT be denoted by
v(n) = (y(n),y1(n),...,yny(n))T. It consists of the entries ;(n), where j = 0 refers
the serving BTS and j = 1, ..., N denote the neighboring BTS. Without loss of general-
ity, let the Np measurements of neighboring BTSs be sorted in descending order. Clearly,
~1(n) is the measurement of the neighboring BTS with the largest measured SPL, v2(n)
the measurement of the neighboring BTS with the second-to-largest SPL, etc.

However, not the complete internal measurement list is reported to the serving BTS.
To reduce traffic, only the measurement of the serving BTS and the Ng(n) < 6 largest
measurements of the neighboring BTSs together with the corresponding BTS identifiers
are reported.

Due to the GSM-internal representation of SPL. measurements in a meter called RXLEV,
reported measurements can only represent values in the range of -110dBm to -48dBm in
steps of 1dBm. Thus all measurements above -48dBm and below -110dBm are clipped
before they are transmitted.

Let the resulting measurement report (MR), which is transmitted from the MT to the
BTS be denoted by v'(n) = (v4(n),v1(n),... ,%VR(n)(n))T. The first entry 7;(n) refers to
the serving BTS and v;(n),j = 1,..., Ng(n) refers to the possibly clipped measurement
7;(n) of the neighboring BTS, for which a SPL was measured and ranked on j-th position.
Note that at different times n, a different subset of BT'Ss delivers the Nz(n) largest values.
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Figure 1: Histogram of recorded measurements.

2.2 Field Data

A measurement campaign has been conducted in the city center of Stuttgart, Germany.
Measurements along four different routes, each of a maximum length of approx. 3km,
have been recorded. Every 5 seconds on average an MR was recorded together with the

geographic coordinates obtained by a GPS unit for validation purposes, amounting to a
total of 947 MRs.

The measurement procedure detailed in the last section causes some distortion of the
statistical characteristics of the reported data. Figure 1 shows the histogram of the
recorded measurement that were reported. Clearly the effect of clipping at -48dBm can
be observed due to excellent reception conditions, a significant amount of all reported
measurements are reported as being above -48dBm.

3 Similarity Measures

Our novel similarity measure (SM) considers these mentioned effects. Regarding DAP
as a pattern recognition problem, the location of that database entry is chosen as an
instantaneous estimate of the MT position, which maximizes the conditional probability
of the MR when the MT is located at the regarded location. Thus the required SM is
equal to a conditional probability:

d(y'(n),s(l)) :=p (v (n)Is(tx)) - (3-3)

The required probability density function (PDF) p (4/(n)|s;(¢x)) can be obtained by an-
alyzing the described measurement procedure, beginning with the SPL measurements of
the (Np + 1) BCCHs. Assuming independent and identically distributed (i.i.d.) mea-
surements, the joint probability of this internal measurement list can be split up into the
product of the single probabilities of its Ng separate measurements:

p(v(n)[s(lk)) = Hp (vi(n)lsi(Ck)) , (3-4)



where s;(fy) is the corresponding prediction of ~;(n) for position ¢.

In lack of evidence for any other distribution we assume an additive error model for these
measurements with a Gaussian distributed measurement error:

p (vi(n)lsi(lr) = N'(i(n) = si(lr); 1, 0%), (3.5)

here N (x; i, 0%) denotes a Gaussian density with mean p and variance o>

x. The bias u considers systematic prediction or measurement errors.

, evaluated at

With these single PDF's, the probability of the MR can be calculated using order statistics
[7, 8]. Therefore, the probabilities of having observed 7;(n) and that this observation is
ranked on j-th position of all N measurements is computed. Note that j<Ng(n), since
we need to calculate only the probabilities of reported measurements.

Since the resulting formulae are quite unwieldy, the densities are approximated by Gaus-
sians with properly chosen means and variances, denoted by /i and 62 in the following.
So we arrive at a first similarity measure, which is denoted by the subscript ”"A”:

Ng(n) Ng(n)
pa(¥'(n H pa (vi(n)]si(lr)) = H N(vi(n) = si(ly); 1, 5°). (3.6)

This first SM can be enhanced by compensation of clipping, which was disregarded yet. In
the following we show how to extract maximum information from a reported measurement
vi(n) clipped at -48dBm.

Intuitively, it is clear that a clipped value should not be used "as is” in the similarity
measure. The information conveyed by a clipped value is that the true, unclipped value
is greater than -48dBm. This information can be incorporated using the minimum mean
square error (MMSE) estimate

p(vi(n) > —48dBmls;((x)) = Elpa(vi(n)lsi(€x))|ri(n) > —48dBm]
_ S isanm P (2]3i(6r)) dz (3.7)
fiSdBm pa(z[si(fy)) do

Thus a more reliable position estimation can be obtained by use of this enhanced SM
denoted version "B”:

pe (¥'(n H pi (i (n)]si(4r)) (3.8)

with

B (Vi()]5i(Ck) = S [ umm P2 (lsi (00))dz (3.9)

ffzsdBm pa(zlsi(ly))dz

A (vi(n)|si (L if 4/ < —48dBm
) {p (i (n)si(Cr)) elsve.

So far we have not yet exploited all available information. The inherent information
about all Ng — Ng(n) unreported measurements is, that they are smaller than or equal
to the smallest reported SPL, since the SPLs of all Ng base stations have been measured,
but only the strongest Ngz(n) have been reported to the serving base station by the MT.



This information can be included in a similar way as clipped values are handled: Since
these measurements are not known by the serving base station, it is possible to calculate
conditional expectations of their probabilities due to the fact that their distribution
function is known and that these unreported measurements are bounded by the smallest
reported measurement. This allows to extend our SM to all unreported measurements
resulting in SM version ”C”:

Ng(n)

pc (¥ (n HpB vi(n)|si(Cr)) H pe (n(n)]si()) (3.10)

lNR +

with ) o
Vi (my (7
RO 2 (] si(0y)) d

7 - (n) )
N pa (x]si(ly)) dz

o0

pe (m(n)]si(l)) = (3.11)

where vy, (n)(n) denotes the smallest reported signal power level.

4 Post Filtering

Since instantaneous position estimates disregard any constraints arising from the lim-
ited mobility of a MT, post filtering using an appropriate state space model of the MT
movement and an appropriate measurement model can be applied to raise accuracy.

The state equation describes the M'T movement in a dynamical state model of the object
state vector x(n) driven by a system noise vector v(n — 1):

x(n) = fu(x(n —1),v(n —1)), (4.12)

where x(n) = (€.(n), l:(n),vy(n),v,(n))T consists of position and velocity in Cartesian
2D-coordinates and f, is the function describing the process dynamics, that can be
assumed to be linear here.

The measurement equation describes the dependency of the measurement z(n) on the

state vector:
z(n) = hp(x(n), w(n)), (4.13)

where h,, is a possibly non-linear function and the vector w(n) is called measurement
noise.

Our goal is to estimate p(x(n)|Z(n)), i.e. the a-posteriori PDF of the system state
at time n given the measurements Z(n) := {z(1),z(2),...,z(n)} in a recursive manner
from p(x(n—1)|Z(n —1)). With this PDF the MMSE estimate x(n) of the current state
can be calculated ("filtering”).

In principle the a-posteriori PDF can be updated recursively employing Bayes’ rule

px(m| () = plxn)fa(n), 2 — 1)) = PAEIEROIBR =) 1

with ¢(n) = p(z(n)|Z(n — 1)) = [pr(z( n))-p(x(n)|Z(n — 1))dx(n) being a normal-
ization constant. py(z(n)|x(n)) is called hkehhood function and is (implicitly) defined by



the terms of the measurement model. The prediction p(x(n)|Z(n — 1)) can be calculated
using the Chapman-Kolmogorov equation

p(x(n)[Z(n —1)) = /p(X(n)\X(n — D)p(x(n = 1)[Z(n - 1))dx(n — 1), (4.15)

where p(x(n)|x(n — 1)) is (implicitly) defined by the terms of the state model.

In the case of a linear state and measurement model, white Gaussian system and mea-
surement noise the optimal solution to this set of equations is the well-known Kalman
filter. In our case, we can assume a linear state equation, but the measurement equation
is definitely non-linear, since the measurements, i.e. the MRs depend in a highly non-
linear fashion on the MT’s position. So, Kalman filtering is not suitable in this context.
Instead, particle filtering, which is able to cope with a non-linear system model, has been
employed [9, 10].

4.1 Particle Filtering

Particle filtering - also known as bootstrap filtering, condensation algorithm or ”survival
of the fittest” - is a sequential Monte Carlo method and thus a randomized algorithm,
where PDF's are approximated by a weighted set of random samples rather than by
moments. It operates on the true measurements, the MRs. If Kalman filtering were to
be used, the measurements would first have to be reduced to an instantaneous position
estimate, which is obtained by determining the maximum of the PDF see equation (2.2).
By doing so, a lot of information is lost, e.g. a hypothetical position with just a little
smaller probability than the position winning the argmax-operation, would be completely
disregarded.

This is not the case when using particle filtering. Here, the a-posteriori PDF p(x(n)|Z(n))
is approximated by a set of Ng discrete samples x’/(n),7 = 1,2,..., Ng with respective
weights w’(n) tracked over time. These samples, which are called particles, are drawn
from a so-called proposal PDF ¢(x(n)|Z(n)), since it is not possible to sample from
p(x(n)|Z(n)) directly, causing

p(x'(n)|Z(n))
q(x'(n)|Z(n))
Note that the choice of this proposal PDF is a critical design issue for particle filtering.

Here, we have chosen ¢(x*(n)|Z(n)) = p(x(n)|x‘(n)) resulting in the so called sampling
importance sampling (SIR) particle filter.

w’(n) o

(4.16)

A set of particles, which represent hypothesized values of the state variable, approximates
this PDF very well:

p(x(n)|Z(n)) ~ Z w!(n)d(x(n) —x(n)). (4.17)

Since this estimation is recursive, all particles are handled in an iterative manner.



In a first processing step of every iteration, the corresponding weights are updated by
evaluating the new measurement using the likelihood function py(z(n)[x’(n)):

wi(n) := w(n — 1)-pp(z(n)|x (n)). (4.18)

This part is called "measurement update”, since the weights modelling the prediction
p(x(n)|Z(n — 1)) are updated, delivering an approximation of p(x(n)|Z(n)). Therefore,
the likelihood function is another critical issue when applying particle filtering.

Normalization of the weights allows to calculate the MMSE estimate of the target’s state
that is obtained as the weighted sum of all particles:

3,5 w (n)-xI (n)

X = o )

(4.19)

In a second step, resampling is performed in order to avoid degeneration of the system
over time by discarding unlikely hypotheses in order to keep a significant amount of
particles with high weights.

In this step, Ng new particles, where generated from the current set of particles by sam-
pling with replacement, where the probability of sampling a particle x7(n) is w?(n). Note
that resampling can be done in a deterministic way (systematic resampling). Afterwards,
normalization of all particle’s weights is done by setting them to w’(n) = NLS
The execution of this resampling step can be adaptively triggered by the effective weight
1

N N2

2252 (wi(n))

having fallen below a given threshold Nr (importance sampling).

N ~ (4.20)

In the third step, all particles are propagated using the state space model. Here, the
system noise must be included for the prediction of every particle by what this algorithm
becomes randomized.

4.2 Particle Filtering for DAP

Utilizing particle filtering for DAP, we used a state vector which consists of the MT
position and its velocity in Cartesian 2D-coordinates.

Further, a linear state equation was used where the system noise term corresponded to a
random acceleration. The measurements on which the designed particle filtering operates
on, are the MRs: z(n) = ~/(n).

The required likelihood function pr(z(n)|x’/(n)) is the presented conditional probability
denoted by similarity measure version "C”. By use of this most enhanced similarity
measure the MR is compared with the predictions on the particle’s positions which are
obtained by bilinear interpolation of the 4 nearest locations in the database.

Another critical issue is the initialization of particle filtering. Our designed filter is
initialized by placing the particles on the locations of those database entries that achieve
highest probabilities for the first MR.



In our context, particle filtering faces the issue of sample impoverishment, since particles
can remain in a local minimum of the PDF'. This causes the undesired effect of a decreasing
variance of all particle locations. Thus, the particles cannot track the object anymore.
This can be avoided by a procedure, that will be executed if the variance of particle
locations is fallen below a given threshold. Then, the particles will be placed randomly
in the area of a circle centered at the mean of all particle locations. In our case, this
procedure was triggered when the mean distance of all particle positions to the average of
the particle positions is fallen below 24m. The circle in which the particles were randomly
placed was defined by a radius of 75m around this average.

Due to efficient interpolation of the SPL predictions for the particle’s positions, particle
filtering needs much less computing resources than the computation of the instantaneous
estimate (2.2). Whereas every database entry had to be accessed for the instantaneous
estimations in the time intensive search for the maximum, in our implementation the
number of database accesses is reduced to the number of particles.

We employed particle filtering using Ng = 650 particles with resampling triggered if the
effective weight falls below Np = 90.

5 Experimental Results

In a first step, the three versions "A”, "B” and ”"C” of SMs are compared for instanta-
neous position estimates in order to use that version, which delivers best results for the
likelihood function of particle filtering. Furthermore, the obtained results will serve as a
reference for assessing the post filtered results.

In a jackknife procedure, measurements from three routes were used as training data to
estimate means and variances of the Gaussians. The data of a fourth campaign was used

as test data.
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Figure 2: Positioning errors by instantaneous position estimates for real data (left) and
synthetical data (right).

Figure 2 depicts the cumulative probability function of the position error for the three
presented SMs. The most simple SM version ”A” is marked as a dash-dotted line. Using
this measure a positioning error of less than 100m was obtained in 52% of the cases
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Figure 3: Positioning errors by post filtered position estimates.

and below 250m in 86%, which does not meet FCC’s requirements for network based
positioning, recommending an error of below 100m in 67% of all cases. The results of
clipping compensation are shown as a dotted line. The position estimates are only slightly
better, since only 8.7% of all reported measurements were clipped. Therefore, slightly
more reliable results can be attained utilizing the inherent information about unreported
SPLs.

In control experiments with synthetically generated measurement data and perfect knowl-
edge of the list of neighboring base stations the improvement compared to version ”A”
by using similarity measure version "C” were much higher, see right part of figure 2.
The somewhat disappointed improvements observed on the field data may in part be ex-
plained by the fact that the network neighborhood list had originally not been recorded
during the measurement campaign and could only partly be reconstructed afterwards.

Now post filtering was applied to the field data. Since particle filtering belongs to the
family of randomized algorithms a route was estimated ten times in order to reduce
influences caused by the randomization.

The solid line in figure 3 repeats the results for instantaneous location estimates using
similarity measure version ”C” which is seen in figure 2. The dotted line shows the results
obtained from post filtering using particle filtering.

Applying particle filtering, a positioning error of less than 100m was obtained in 70% of
the cases and below 300m in 99%. So the accuracy was raised to such an extent, that it
meets FCC’s requirements for network based positioning.

Compared to the results reported by Laitinen et al.[2] mentioned in the introduction,
these results are modest. However, it should be noted that no additional information
like a-priori knowledge about allowable positions is used and that the proposed scheme
is fully compatible with existing MTs and network infrastructure while the calculation
complexity is reduced compared to instantaneous estimates.



6 Conclusions

In this paper, the design of particle filtering for post filtering instantaneous position
estimates by database assisted positioning using a novel similarity measure was presented.

The similarity measure was derived from the GSM measurement protocol. While leav-
ing the procedure of reporting measurements unchanged and thus being compatible with
existing mobile terminals and base stations, inherent information about clipped and un-
reported measurements is considered. Experimental results showed raised accuracies by
incorporation of this additional information.

Furthermore, we have shown how non-linear post filtering through particle filtering can be
carried out to obtain more reliable position estimates fulfilling FCC’s recommendations
for network based positioning. Due to efficient interpolation, this approach reduces the
calculation time. Furthermore, sample impoverishment was detected.
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