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ABSTRACT

We examined variants of MFCC and PLP cepstral
parameterisations in the context of large vocabulary
continuous speech recognition under di�erent acous-
tical environmental conditions: Compared to MFCC,
mel-frequency PLP uses a cubic root intensity-to-
loudness law, and an LPC analysis is applied to the
mel-warped spectrum. In LPC-smoothed MFCC,
the only di�erence to MFCC is the additional LPC
smoothing of the warped spectrum. While neither
technique was able to signi�cantly outperform the
MFCC parameterisation in our setup which includes
an LDA feature transformation, feature set combina-
tion via DMC at the acoustic likelihood level and via
ROVER at the recognized word level delivered small
but consistent improvements.

1. INTRODUCTION

Parameterisation of an analog speech signal is the
�rst stage in the speech recognition process. Finding
a robust speech representation is a precondition for
the success of the subsequent recognition steps. Mel-
frequency cepstral coe�cients (MFCC) [1] are prob-
ably the most popular speech feature set which have
even been subject to standardisation in the AURORA
project [2]. Nevertheless, there is still active research
in superior speech representations for speech recogni-
tion. A lot of e�ort is devoted to exploiting phys-
iological and psychoacoustic �ndings about human
perception. Examples are Perceptual Linear Predic-
tive (PLP) analysis [3] and the Ensemble-Interval His-
togram (EIH) [4]. See e.g. [5] for a short overview of
auditory feature extraction research. Auditory mod-
els tend to be computationally more complex than
standard feature extraction techniques. This may
be one reason why they have not been used exten-
sively in large vocabulary continuous speech recogni-
tion. However, some of the ideas, notably those of
PLP, have lead to variants of MFCC feature extrac-
tion which are used by a couple of groups participat-
ing in the Hub-4 evaluations [6].

In this paper we investigate di�erent variants of
MFCC and PLP cepstral parameterisations in the

context of large vocabulary continuous speech recog-
nition (on Wallstreet Journal (WSJ) and Hub-4
databases). The goal of this study is to gain in-
sight in the importance of di�erent processing steps
in the cepstral parameterisations and, ultimately, to
improve the widely used MFCC representation. We
de�ned three test scenarios, which we assumed typical
for many real-world applications: \matched-clean"
(training and test on WSJ data), \matched-noisy"
(training and test on Hub-4 data), and \mismatch"
(training on WSJ, test on Hub-4).
Further, we investigated options for combining fea-
ture sets: a combination at the feature vector level
via linear discriminant analysis (LDA), a combina-
tion at the acoustic likelihood level via Discriminative
Model Combination (DMC) [7], and a combination at
the recognized word level via ROVER [8].
The paper is organized as follows: In section 2 the
di�erent cepstral parameterisations investigated are
described. Section 3 presents a performance compar-
ison of feature sets on the forementioned test scenar-
ios, and section 4 highlights our e�orts in improving
error rate by combining feature sets. Finally, section
5 contains some conclusions.

2. CEPSTRAL PARAMETERISATIONS

Hermansky has extended Linear Prediction analy-
sis to \Perceptual" Linear Prediction by introducing
concepts from psychophysics:

� a \human-like" nonlinear frequency resolution by
using the bark frequency scale and trapezoidal
critical band �lters.

� an approximation of the nonequal sensitivity
of the human hearing at di�erent frequencies
through an \equal-loudness" preemphasis.

� a nonlinear sound intensity compression by an
\intensity-to-loudness" transformation.

Recently people have introduced similar psychophys-
ical concepts into the well-known Mel-frequency cep-
stral analysis of speech [10], and devised a variant of
MFCC called \Mel-frequency PLP" (MF-PLP), see
Fig. 1:
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Figure 1: Cepstral parameterisations.

� Rather than using critical bands and a bark
scale, the mel-frequency scale and the bank of
triangular bandpass �lters known from MFCC
analysis is used. Actually the di�erence between
the Mel and the Bark frequency scale is very
small [11].

� Equal-loudness preemphasis is not included,
since the standard preemphasis applied to the
speech waveform has a similar e�ect.

� The log-function present in MFCC is replaced by
the cubic root intensity-to-loudness law used in
PLP.

� LPC analysis is conducted as in (P)LP analysis.
This results in a smoothed spectrum.

� Cepstrum coe�cients are computed as is also to-
day common practice in PLP analysis.

Using MF-PLP people reported improved word er-
ror rate performance compared to MFCC, notably
in training/test mismatch situations [10]. In order to
understand the improved robustness we experimented
with di�erent con�gurations, where we subsequently
exchanged building blocks of MFCC analysis with
corresponding blocks of MF-PLP analysis. Of those,
the most promising setup was what we called \LPC-
smoothed MFCC", where only the LPC smoothing of
the spectrum is added to the MFCC analysis, see Fig.

1. This con�guration is similar to what BBN used in
their Hub-4 system [12].

3. TEST ENVIRONMENT AND

EXPERIMENTAL RESULTS

We de�ned three test scenarios, representative of a
wide range of recognition setups:

� \matched-clean:" Training on WSJ0 42 male
speakers (7.5h). Test on the four WSJ 5k test
sets dev/eval 92/93 (20 male speakers, 13113
words), bigram language model.

� \matched-noisy:" gender-dependent training
on 96h of Hub-4 training data. Test on Hub-4
eval'97 test set, partitioned evaluation (approx.
3h, 32832 words), trigram language model.

� \mismatch:" gender-dependent training on
WSJ0+1 database (142 male and 142 female
speakers, approx. 40h per gender). Test on Hub-
4 eval'96 test set, partitioned evaluation (approx.
2h, 20318 words), bigram language model.

While the WSJ data are read speech in a clean
acoustic environment, the Hub-4 data comprise var-
ious acoustic conditions and speaking modes, such
as clean, prepared speech (F0), spontaneous speech
(F1), speech recorded over telephone channels (F2),
speech in the presence of background music (F3),
speech under degraded acoustic conditions (F4), non-
native speakers (F5) and others (FX). The acronyms
in parenthesis are the socalled focus conditions, which
NIST has used to categorize the data.

In our recognition experiments the incoming speech
signal is blocked every 10ms into frames of 25ms
width, irrespective of the type of cepstral parameter-
isation used. Sentence based (in the case of WSJ) or
segment based (in the case of Hub-4) cepstral mean
normalization is applied to the cepstral feature vec-
tors. Further, in the case of the matched-noisy sce-
nario, the variance per segment is normalized to unity.

Rather than computing �rst and second order time
derivatives explicitly, 7 adjacent (static) feature vec-
tors are concatenated to form a large vector which is
transformed by a Linear Discriminant Analysis trans-
formation to a 35-component output feature vector.

In the acoustic modeling we employ within-word tri-
phone models and decision-tree clustering. Note that
mixtures of Laplacian densities with a single globally
pooled mean absolute deviation vector are used.

Table 1 presents the results for the three cepstral pa-
rameterisations introduced in section 2 and for the
test scenarios described above. Tables 2 and 3 allow
a closer look at the results on the Hub-4 databases by
showing error rates for the di�erent focus conditions.
In the case of MF-PLP we used an LPC analysis of



order 15 while an order of 20 turned out to be opti-
mal for LPC-smoothed MFCC. As can be seen nei-
ther MF-PLP nor LPC-smoothed MFCC was able to
consistently and signi�cantly outperform the MFCC
feature set. In particular there was no overall perfor-
mance gain by MF-PLP in the mismatch scenario1.

A Matched-pairs test [9] was carried out between any
two of the recognition outputs on the Hub-4 eval'97
test set (\matched-noisy"). Comparing MFCC with
MF-PLP led to a P-value of 0.033, which means that
under the hypothesis H0 that the two systems per-
form equally well, the observed di�erence would arise
in about 3.3% of the occasions. Hence, it is reason-
able to regard MFCC and MF-PLP as di�erent. Both
other comparisons resulted in P-values larger than
0.14 and so H0 cannot be rejected.

Table 1: Word error rate in % for MFCC, MF-PLP
and LPC-smoothed MFCC feature vectors on 3 test
scenarios.

Parameter- matched matched mis-

isation clean noisy match

MFCC 10.1 21.6 41.8

MF-PLP 10.3 22.1 42.2

LPC-

smoothed 10.1 21.9 41.3

MFCC

95% conf.

interval (9.6, 10.6) (21.2, 22.0) (41.1, 42.5)

for MFCC

Table 2: Word error rate in % for MFCC, MF-
PLP and LPC-smoothed MFCC feature vectors on
matched-noisy test scenarios. Recognition results on
Hub-4 eval'97 test data per focus condition.

All F0 F1 F2

MFCC 21.6 13.1 20.1 32.2

MF-PLP 22.1 13.4 21.3 31.4

LPC-smoothed MFCC 21.9 13.4 20.5 31.9

F3 F4 F5 FX

MFCC 30.9 25.6 23.9 37.2

MF-PLP 32.5 26.0 27.1 38.1

LPC-smoothed MFCC 31.4 25.2 25.6 38.8

It is interesting to note that Linear Discriminant
Analysis, which is a specialty of our recognition sys-
tem, reduces the \di�erence" between the three fea-
ture sets and thus the chance to improve beyond

1In [13] it was reported that the superiority of MF-PLP only
occured after MLLR adaptation while MFCC was better before
adaption. In our environment MFCC outperformed MF-PLP
even after adaptation (20.0% vs 20.4% in the matched-noisy
scenario).

Table 3: Word error rate in % for MFCC, MF-PLP
and LPC-smoothed MFCC feature vectors on mis-
match test scenarios. Recognition results on Hub-4
eval'96 test data per focus condition.

All F0 F1 F2

MFCC 41.8 30.8 37.4 56.8

MF-PLP 42.2 31.6 38.0 58.0

LPC-smoothed MFCC 41.3 30.6 37.4 55.3

F3 F4 F5 FX

MFCC 46.2 51.8 44.1 60.1

MF-PLP 45.7 50.1 40.1 61.2

LPC-smoothed MFCC 45.5 50.4 45.1 59.5

MFCC. Fig. 2 shows the value of the correlation co-
e�cient �i between the i-th MFCC and MF-PLP fea-
ture vector component before and after LDA trans-
formation. Note that in our setup the MFCC signal
analysis results in 16 static cepstral coe�cients while
20 coe�cients have been computed in MF-PLP. In the
�gure, the 35 features after LDA have been ordered
according to decreasing correlation coe�cient.

If j�ij were unity, then the MFCC feature xi could
be written as xi = ayi + b where yi is the MF-PLP
feature and a; b are constants. Such a linear transfor-
mation between input features is however absorbed
by LDA, since the optimization criterion of LDA, the
trace of the inverse within-class scatter matrix times
the between-class scatter matrix, is invariant to lin-
ear transformations. Clearly: Let z = ATx be the
transformed MFCC feature vector and ~z = ~AT y the
transformed MF-PLP vector, where A and ~A are the
corresponding LDA transformation matrices obtained
by maximizing the trace criterion on the correspond-
ing feature set. Then z = ~z [14]. Full correlation of
MF-PLP and MFCC feature vectors would result in
identical feature vectors after LDA! Indeed one can
see that the feature vectors are less \di�erent" after
LDA: the correlation coe�cients are larger.

4. FEATURE SET COMBINATION

Neither MF-PLP nor LPC-smoothed-MFCC was able
to outperform MFCC consistently in the experiments
reported in the last section. Although the correlation
analysis revealed a high correlation between the fea-
tures of the di�erent parameterisations, an \oracle-
experiment" on the Hub-4 eval'97 results delivered
an error rate of 16.6%; i.e. if we had a wizard which
selected the correct word, if present among the three
recognition alternatives, we were able to improve from
21.6% to 16.6%! Thus there is quite some room to
improve performance by feature set combination. In
particular we tried combinations at the feature level,
at the acoustic likelihood level and at the recognized
word level.
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Figure 2: Ordered correlations. Before and after
LDA.

A combination at the feature level was conducted by
adjoining a MFCC and a MF-PLP vector to one fea-
ture vector prior to LDA. The LDA transformation
should then deliver the best linear combination of the
two cepstral parameterisations. This approach, how-
ever, delivered no error rate improvement and was
thus abandoned.
A combination at the acoustic likelihood level was
achieved via Discriminative Model Combination [7].
DMC aims at an optimal log-linear combination of
given acoustic (and, possibly, language) models into
one posterior probability distribution. The model
weights are trained using discriminative training cri-
teria. We applied DMC to combine word scores of
acoustic models trained on the three feature sets in a
word lattice.
ROVER [8] is used to combine the recognized word
sequences obtained from the three parameterisations.
Since we did not use con�dence information ROVER
amounts to a simple majority voting among the three
recognition alternatives.
Table 4 shows that both DMC and ROVER achieve
a small error rate improvement on the Hub-4 eval'97
and eval'96 data, compared to the best single feature
set, MFCC.

Table 4: Combination of MFCC, MF-PLP and LPC-
smoothed MFCC feature sets. Matched noisy sce-
nario. Tests on Hub4-4 eval'97 and eval'96, �le 4.

Combination matched noisy

via Hub-4 eval'97 Hub-4 eval'96, �le 4

ROVER 21.4 25.6

DMC 21.4 25.5

\oracle" 16.6 20.3

MFCC features 21.6 26.2

5. CONCLUSIONS

The feature extraction variants we experimented with
were not able to outperform MFCC consistently in a
large vocabulary continuous speech recognition setup,
even under training/test mismatch conditions. More
research is needed to understand why and how psy-
chophysically motivated processing steps can improve
robustness. Minor, though consistent improvements
were obtained by feature set combination, both by
DMC and ROVER. Compared to what an ideal com-
bination would be able to deliver, the improvement,
however, was moderate.
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