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ABSTRACT

Although speaker normalization is attempted in very different
manners, vocal tract normalization (VTN) and speaker adaptive
training (SAT) share many common properties. We show that both
lead to more compact representations of the phonetically relevant
variations of the training data and that both achieve improved error
rate performance only if a complementary normalization or adap-
tation operation is conducted on the test data. Algorithms for fast
test speaker enrollment are presented for both normalization meth-
ods: in the framework of SAT, a pre-transformation step is pro-
posed, which alone, i.e. without subsequent unsupervised MLLR
adaptation, reduces the error rate by almost 10% on the WSJ 5k
test sets. For VTN, the use of a Gaussian mixture model makes
obsolete a first recognition pass to obtain a preliminary transcrip-
tion of the test utterance at hardly any loss in performance.

1. INTRODUCTION

Normalization techniques applied in the training of auto-
matic speech recognizers aim at separating phonetically rel-
evant variations from irrelevant variations caused e.g. by
speaker particularities or the acoustic environment of the
training data. The potential benefit of such an approach is
twofold:

� If only the relevant variations of the training data are
learnt, the resulting models are more compact, i.e.
fewer parameters are required to capture the informa-
tion relevant for decoding.

� If applied in training and recognition it should result
in a reduction of the mismatch between training and
testing conditions and therefore improve the error rate
performance.

While simple and effective normalization techniques,
such as cepstral mean subtraction, are widely in use, there
is a growing interest in more elaborate techniques which
incorporate the normalization in the maximum likelihood
(ML) parameter estimation framework, e.g. [1, 2, 6, 7, 9].

In this paper, we concentrate onspeakernormalization
and investigate the commonalities and differences of two
known approaches: speaker adaptive training (SAT) [2, 3, 4]
and vocal tract normalization (VTN) [5, 8, 9, 10]. Although
these methods rely on quite different adaptation techniques,

namely, affine transformations of means for SAT and warp-
ing of the frequency axis for VTN, they share the same ML
framework.

SAT integrates the adaptation technique of maximum
likelihood linear regression (MLLR) in the HMM training
and the parameters of both, per-speaker affine transforma-
tions and mixture densities, are jointly estimated. Piecewise
linear transformations of the means have been shown to cap-
ture speaker characteristics reasonably well and when incor-
porated in the training process, they lead to “purer” models,
as can be measured e.g. by their variance [3, 4].

However, as we will see, this only pays off in better
recognition performance if a complementary action, in this
case MLLR adaptation, is done during recognition. More-
over, the byproduct of SAT, an inventory of MLLR transfor-
mations related to the training speakers, can also be success-
fully used to speed up the enrollment of new test speakers
as shown in [4]. This approach has been further refined and
new results are presented.

VTN on the other hand, performs a normalization in
the signal space: for each training speaker an optimal fre-
quency warp scale is determined and the feature vectors are
computed from the accordingly warped frequency axis. In
contrast to SAT, a single scalar normalization parameter per
speaker is applied, and its effect in the model space is highly
nonlinear. But, similar to SAT, we will see that VTN models
are more compact and that a complementary normalization
is required on the recognition data to gain a performance
benefit.

In principle, warp scale and model parameters should
be estimated iteratively, just like the iterative estimation of
transformation matrices and HMM parameters in SAT. This,
however, is computationally very expensive. An approx-
imation is to do just one or two iterations [8] or to split
the training data in two sets, and alternately determine warp
scale and model parameters on either of them [9].

For the determination of the best frequency warp scale
in recognition a number of methods have been proposed [5,
9, 10]. One popular approach, the selection according to the
largest likelihood of the test utterance given a hypothesized
word sequence [8, 9], is again exactly the same approach as
employed for fast enrollment of a test speaker in SAT [4].



Here, we propose a fast warp scale selection algorithm
using a single Gaussian mixture model of speech in the
normalized feature space. A similar approach based on a
generic model of voiced speech has been introduced in [10]
but our solution is simpler as it is applied on the whole
(voiced and unvoiced) speech and the Gaussian mixture is
trainedafter the optimal warping factors have been selected.
Another related approach described in [9] used one mixture
model for each warping factor.

The paper is organized as follows. In the next section,
we investigate the normalization effect of both SAT and
VTN. Section 3 is devoted to fast enrollment of test speak-
ers, and we draw some conclusions in Section 4.

2. ON THE EFFECT OF SPEAKER
NORMALIZATION

The basic idea underlying SAT is that the characteristics of
each training speaker can be expressed by a set of linear
transformations mapping the speaker-independentmeans on
the speaker-specific acoustic domain, and the estimation of
these transformation parameters is embedded in the mixture
density HMM training [2]. This leads to a ML formulation
for jointly estimating three sets of parameters:

� First, a set of MLLR transformations is estimated for
adapting the speaker-independent (SI) means to each
of the training speakers.

� Next, the SI means are reestimated as a weighted av-
erage of the inverse affine transformations applied to
the speaker-dependent (SD) means. As shown in [4],
the weights are the potential matrices of the corre-
sponding SD distributions when transformed back to
the SI acoustic space.

� Third, the SI covariances are reestimated in a similar
manner as the means.

In [4], we observed that the overall variance of the SAT
models (averaged over all densities and dimensions) is in-
deed significantly smaller than with standard SI models.
Further, the log-likelihood of the training data is increased,
both supporting the expectation that the SAT models should
be “purer”. However, this is not an advantage per se, as
can be seen from Table 1. This table presents word error
rates obtained over four WSJ 5k test sets, resp. the dev and
eval sets of Nov’92 and ’93, comprising 38 speakers and
24,630 spoken words. For the SAT experiments, the signal
front-end consists of a 30 channel filter bank followed by a
gender-independent LDA and training was done on the 84
speakers (m+f) of WSJ0. When MLLR adaptation is per-
formed on the test data, it is doneunsupervisedand incre-
mentally after each sentence (spoken by the same speaker).
Starting with standard SI models (no SAT), unsupervised
MLLR improves the accuracy by 16% relative, from 9.4%
to 7.9%. In contrast, SAT models “as such” are about 10%
worse but MLLR adaptation reduces the errors by 26%,
leading to a final score of 7.7% which represents a small

Table 1: Effects of SAT and unsupervised MLLR on
word error rate (WER) for gender-independent (GI)
models. WSJ 5k 92/93 dev/eval test sets, bigram lm.

MLLR applied in #dens del – ins WER
train (SAT) recog (GI) [%] [%]

no no 106k 2.2 – 0.8 9.4
no yes ” 2.1 – 0.6 7.9
yes no ” 2.0 – 1.2 10.4
yes yes ” 1.8 – 0.8 7.7

2.5% improvement. It is clear that SAT provides a rather
poor starting point that penalizes the unsupervised adapta-
tion process. When combined withsupervisedMLLR adap-
tation, SAT has been shown to bring substantially larger
benefits [2, 3, 4].

VTN techniques perform a normalization in the signal
space by, typically linearly, warping the frequency axis by a
speaker-specific warping factor [8, 9, 10]. While, very sim-
ilar to SAT, the per-speaker warping factors and the model
parameters can be estimated iteratively, we employed a sim-
plified training scheme with just one iteration:

1. An intermediate model�with a small number of den-
sities per state is estimated from the unwarped fea-
tures of all training speakers by maximum likelihood
(ML) training.

2. For each training speakerr, a warp scale�r is chosen
as the scale for which the training data of this speaker,
Xr(�), achieve the greatest likelihood, given the tran-
scriptionsWr and the intermediate model�:

�r = argmax
�

Pr(Xr(�)jWr ; �):

We used an exhaustive line search for� in the range
0:88 � � � 1:12 with step size0:02.

3. A model� is trained on the warped utterances by ML
training.

Table 2 again presents results on the four WSJ 5k test
sets, now for a gender-independent (GI) and a gender-
dependent (GD) setup. In the GD case we trained separate
models on the 42 male and 42 female WSJ0 speakers, re-
spectively, while in the GI case we trained one model set on
the whole si84 training data. The baseline word error rate
of 9.0% is better than in Table 1, because we employed a
slightly different setup with a MFCC+LDA front-end here.

Similar to SAT, speaker normalization in training only
results in worse error rate performance compared to the
baseline system without VTN, in particular in the GI case.
Only if VTN is also applied in recognition, a reduction in
error rate can be achieved. For the results in this table,
we used a preliminary transcription of the test sentence for
the warping factor selection, see next section. Although the
baseline error rate for a SD setup is slightly better, the re-
sults for VTN in training and recognition tend to be better



Table 2: Effects of VTN on the word error rate for
gender-dependent (GD) and gender-independent (GI)
models. WSJ 5k 92/93 dev/eval test sets, bigram lm.

Setup VTN in #dens del – ins WER
train recog (m+f) [%] [%]

no no 95k+95k 1.7 – 0.9 8.9
no yes ” 1.7 – 1.0 8.7GD
yes no ” 1.7 – 1.1 9.1
yes yes ” 1.6 – 0.9 8.5
no no 150k 1.7 – 0.9 9.0
no yes ” 1.6 – 0.9 8.5GI
yes no ” 1.7 – 1.4 10.9
yes yes ” 1.5 – 0.9 8.0

in the GI case. Obviously, VTN was able to discard gender-
specific variations from the training data and could benefi-
cially exploit the larger training database. This is consistent
with the experience of other researchers, e.g. [10].
The normalization by VTN results in “purer” models, as can
be seen from Table 3. The same recognition performance
can now be obtained with a factor of two to three fewer
model parameters, compared to a baseline system without
VTN.
In order to verify the error rate reduction on a different cor-
pus, we conducted experiments on the German SIETILL
telephone digit string database. This corpus consists of 362
training speakers (42860 digits) and 356 testing speakers
(43095 digits) which represent a large variety of line and
speaker characteristics. We used a recognizer with continu-
ous HMMs,singleGaussian emission probabilities, whole-
word models, MFCC front-end and cepstral mean subtrac-
tion. Table 4 shows the drastic performance improvement if
VTN is used in training and recognition. Our interpretation
is that such a large improvement was obtained since the rec-
ognizer usedsingleGaussian emission probabilities. In our
view, the similarity of the error rates for GD and GI mod-
els is due to the large size of the training corpus for each
gender. This experiment again supports our conclusion that
VTN provides a means to overcome the need for gender-
dependent acoustic models.

Table 3: Word error rates as a function of the number
of model parameters (densities). WSJ 5k 92/93 dev/eval
sets, GI models, bigram lm.

no VTN VTN in train+recog#dens
del – ins[%] WER [%] del – ins[%] WER [%]

150k 1.7 – 1.0 9.0 1.5 – 0.9 8.0
95k 1.8 – 1.0 9.3 1.7 – 0.9 8.3
55k 2.1 – 1.0 9.9 1.8 – 0.9 8.7
30k 2.3 – 1.0 10.9 2.0 – 0.9 9.4
16k 2.7 – 1.0 12.1 2.3 – 0.8 10.4
8k 3.2 – 1.1 14.0 2.9 – 1.0 12.3

Table 4: Effect of VTN on word error rates on SIETILL
telephone digit string corpus for GD and GI models.

Models VTN in del – ins WER
train recog [%] [%]
no no 0.6 – 0.7 5.6GD,
no yes 0.6 – 0.7 5.0single dens.
yes yes 0.4 – 0.5 2.9
no no 0.6 – 1.1 7.5GI,
no yes 0.5 – 1.0 5.9single dens.
yes yes 0.4 – 0.6 3.0

3. FAST SPEAKER ENROLLMENT

When adaptation proceedsunsupervised, MLLR is affected
by the recognition errors especially when multiple regres-
sions are considered and this constitutes an handicap to
SAT. In contrast, VTN appears quite robust against script
errors, presumably due to its single parameter. Therefore,
in [4] we proposed to utilize the MLLR transformation ma-
trices estimated during SAT to obtain better initial models
for a new test speaker. This results in an effective pre-
transformation step taking advantage of the training speak-
ers who appear similar to the new one. This approach
has been further improved by allowing for linear combina-
tions of transformation matrices among the selected train-
ing speakers. Given the first unknown utterance of a new
speaker, the following algorithm has been used:

1. Decode using the non-adapted SAT models.
2. For each speaker considered during training:

� Transform the SI means to the speaker-specific
means.

� Compute the likelihood of the hypothesized
word sequence.

3. Select theN transformation matrices yielding the
highest likelihoods.

4. Form a newglobal transformation matrix as a linear
combination of theN selected and transform the SI
means using this new transformation.

5. Carry out the final decoding of the test utterance.

To be more robust against decoding errors, a single matrix
is worked out based on one utterance of the new speaker.
Results are summarised in Table 5.
Combined with SAT models, the pre-transformation step
alone reduces the error rate by almost 20% forN = 7
and achieves a 10% improvement versus standard SI mod-
els. When further combined with unsupervised incremental
MLLR, a final score of 7.4% is obtained, representing a rel-
ative gain of 6% with respect to the figure of 7.9% achieved
by adapting the standard SI models with MLLR (Table 1).
This 2-pass decoding scheme is conceptually very similar to
standard VTN implementations [8, 9] which we also applied
to obtain the VTN results of the last section.



Table 5: Effects on word error rate of SAT combined
with pre-transformation step and unsupervised MLLR.
Results on WSJ 5k 92/93 dev/eval test sets, GI models,
bigram lm.

MLLR applied in del – ins WER
train pre-transf. recog [%] [%]

no no no 2.2 – 0.8 9.4
yes no no 2.0 – 1.2 10.4
yes yes (N = 1) no 1.9 – 0.8 8.8
yes yes (N = 7) no 1.9 – 0.8 8.5
yes yes (N = 7) yes 1.8 – 0.7 7.4

In the following, we present a fast selection algorithm for
the warping factor in VTN which does not require a first
recognition pass to obtain a preliminary transcription. The
method is based on a Gaussian mixture model that repre-
sents the distribution of the normalized feature vectors.
After the training data have been warped as explained in the
previous section, a Gaussian mixture modelM is trained on
the warped data by employing the LBG algorithm and the
ML criterion.
During recognition, the warp scale is selected using the
Gaussian modelM as follows:

� Generate warped featuresX(�) for all warp scales�.

� Select warp scalê�: �̂ = argmax
�

Pr(X(�)jM):

� Decode the sentence using the featuresX(�̂).

In our tests, the Gaussian mixture model had a single di-
agonal covariance matrix and 64 component densities. The
selection of the warping factor was done on speech exclud-
ing silence in training and recognition.
We compared this fast selection method with the standard
2-pass VTN on the WSJ0 5k Nov’92 dev and eval test sets,
comprising 18 speakers and 12132 spoken words. By using
the fast selection method, the decoding time is reduced by a
factor of 2 with only an increase of 2% relative in the word
error rate, see Table 6.

Table 6: Effect of fast warping factor selection on error
rate and relative real time factor (RTF). Results on WSJ
5k 92 dev/eval test sets, GI models, bigram lm.

VTN in #dens del – ins WER rel.
train. recog. (GI) [%] [%] RTF
no no 122k 1.4 – 0.7 7.0 1.00
yes 2-pass 143k 1.2 – 0.6 6.1 2.05
yes fast select. ” 1.3 – 0.6 6.2 1.05

4. SUMMARY

The effects of speaker normalization by using VTN and
SAT were studied. Both methods lead to more compact
acoustic models: we showed that by using VTN the same er-
ror rates are obtained with significantly less acoustic model
parameters compared to a system with no VTN, and that
VTN provides a means to overcome the need for gender-
dependent acoustic models. We showed for both VTN and
SAT that if normalized acoustic models are used, a com-
plementary normalization step has to be carried out during
recognition.

Furthermore, methods for fast test speaker enrollment
were presented for both SAT and VTN: for SAT, a pre-
transformation step based on a linear combination of MLLR
matrices obtained in the training phase was investigated. An
error rate reduction of 10% relative versus standard SI mod-
els was obtained. Using unsupervised incremental MLLR,
the improvement with respect to adapting the standard SI
models was 6% relative. For VTN, we selected the warp
scale using a Gaussian mixture model. On a WSJ 5k task,
this method was shown to give similar error rates as the
common VTN method which requires 2 recognition passes.
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