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ABSTRACT 

Clustering techniques have been integrated at different 
levels into the training procedure of a continuous-density 
hidden Markov model (HMM) speech recognizer. These 
clustering techniques can be used in two ways. First acous­
tically similar states are tied together. It will help to reduce 
the number of parameters but also allow to train otherwise 
rarely seen states together with more robust ones (state­
tying). Secondly densities are clustered across states, this 
reduces the number of densities while at the same time 
keeping the best performances of our recognizer (density­
clustering). We have applied these techniques both to word­
based small-vocabulary and phoneme-based large-vocabula­
ry recognition tasks. On the WSJ task, we could achieve a 
reduction of the word error rate by 7%. On the TljNIST­
connected digit task, the number of parameters was reduced 
by a. fa.ctor 2-3 while keeping the same string error rate. 

1. INTRODUCTION 

Clustering tedmiques have been integrated at differ­
ent levels into the acoustic-phonetic training procedure 
of a continuous-density hidden Markov model (HMM) 
speech recognizer. The main idea of clustering is to 
concentrat.e what is acoustically similar. For a continu­
ou s-density HMM system, acoustic similarity can be 
seen at different levels: At the phoneme level (triphone), 
at the state (or mixture) level and at. the density level. 

Clustering at the first two levels (phoneme and state) 
leads to symbol tying. It answers the qut>Btion "Which 
triphollt>s ilre acoustically similar?" and will help us to 
define a reduced set of models to be trained. It should 
give us the possibility to avoid the duplication of mod­
els, and therefore reduce the number of parameters of 
our system. Furthermore it can make more efficient use 

of training mat.erial, for example, while training rarely 
seen states together with more robust ones. Clustering 
at, t.his level is also known in the literature as tying. 
Following the work at CMU [3] and at CUED [2], we 
decided to concentrate on state-tying rather than tri­
phone tying. 

Clustering at the density level reduces the number 
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of densities and at the same time keeps the best perfor­
mances of our recognizer (density-clustering). Dcnsity­
clustering is done across symbols and is independent of 
the previously mentioned tying. We have applied these 
techniques both to word-based small-vocabulary and 
phoneme-based large-vocabulary continuous-speech re­
cognition. 

The following result.s have been achieved. Com­
pared t,o our base models (without state-tying) which 
gave st.ate-of-the-art results at the Wall Street .Journal 
(WSJ) benchmarking test in November '93 [1], on a re­
duced training set (WSJO with 15 hours of speech ma­
terial) we can multiply the number of trained triphones 
by more than a factor of two by using state-tying t.ech­
niques. Wit.h this increased triphone coverage on the 
test set. the word error rate was reduced globally over 
three different test sets by more than 6%, while at. the 
same time the number of parameters was reduced by 
30%. The method has been extended to the WS.JO+l 
training set (totalizing 62 hours of speech) to augment 
the trip hone coverage of the test. sets now up to 99.6% 
(with 3 times more triphones). This leads to a decrease 
of the WER by more than 7% relative to the November 
1993 system without increasing the number of param­
eters of our system. 

For word model based small-vocabulary speech re­
cognition, state-tying identifies acoustically similar sta­
tes within different words. This results in deciding au­
tomatically which parts of speech of the recognition 
vocabulary are similar and therefore can be modelled 
together. It will avoid duplication of models and thus 
reduce the number of paramet.ers. 

At the density level, the clustering technique allows 
a complexity reduction <tnd robustness increa.se bot,h 
for word-based and phoneme-based systems. For the 
WS.J large-vocabulary recognition task, on the reduced 
WSJO training set, the total number of densities could 
be reduced by another 20% with only a very slight. in­
crease of the word error rate. 

On small-vocabulary recognition tasks, such as the 
TljNIST Connected Digits recognition task, a combi-



nation of stat.e and density-clustering led to a consid­
erable complexit.y reduction: The number of model pa­
rameters could be reduced by a factor of two compared 
to the non-tied system. 

2. STATE-TYING 

For large-vocabulary continuous-speech recognition, tri­
phones have been identified to be adequate to model 
co-articulation effects. However, in any realistic train­
ing set some trip hones will occur very rarely, some 
even never. There are several methods to approach 
t.his problem. One method is to model all trip hones 
present. in the training set. separately, and then to ap­
ply smoothing techniques t.o overcome the problem of 
sparse t.raining data. Another method is to pool rarely 
seen t,riphones in a mono phone model which serves as 
a backing-off model. The latter has been integrated 
in our system. The minimum number of observations 
above which a separate trip hone is modelled has been 
set to 75, It. is clear that within the set of chosen tri­
phones, some a.re acoustically very similar to others, 
which leads to duplication of models. 

Our state-tying t.echnique is very similar to [2]. We 
have compared different clustering criteria: A furthest­
neighbor criterion (1) applied directly to the spectral 
mean vectors and a maximum-likelihood criterion (2), 
which combines the spect.ral distance and the obser­
vation counts in one criterion, The furthest-neighbor 
does not quantify the goodness of a rarely seen model, 
it, takes the spectral mean vectors as they have been 
observed. The distance measure 

calculates the dist.ance between two dusters Ci and Cj, 
where each duster is defined by a set of mean vectors 
71!k and 111. Two dusters C'i and Cj are dustered to­
gether if t.heir distance lies below a certain threshold. 
The new duster will be the union of the original clus­
t.ers. SUl'prisingly, the maximum likelihood criterion 
(2) used for density-clustering has not given the best 
results, It. might indicate that the spectral information 
is enough to decide whether two models may be tied 
together or not, 

Table 1 presents resillt.s for (liiferent. initial num­
bers of states and different. t.hresholds on the maxi­
mum diameter of a cluster ('cluster threshold') using 
t.he furthest-neighbor criterion. The training set used 
for these experiments is the so-called \'VSJO training 
�et summing up to around 15 hoUl's of speech equally 
balanced between male and female speakers. Our base 
system CWSJO_a) is the non-tied system optimized for 
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the 5000 word vocabulary WSJ benchmarking test from 
November 1993 [1]. The opt,ima.I number of triphone­
states for our base system had been set to 2208 + 130 
triphone and monophone states, l'espect.ively. As can 
be seen from the first two lines of Table 1, applying 
state-tying led to a reduction of the number of densi­
ties by a factor of two without changing t.he tot,al word 
error rate over three test sets. These three test sets 
consist in total of 20774 pronounced words. 

Table 1: Bigram word error rates on different WSJ test 
sets with and without state-tying. Training was done 
on WSJO. 
No. of Cluster No. of No. of 5k test Test 
states thres- states densi- set set 
before hold after ties (si_evl.'i, triph. 
tying tying (Male si_dev.5, cove-

+ si_dL05) rage 
Female) 

2208 0 2208 245k 11.90% 75% 
2208 16 1336 115k 11.92% 
5565 0 5565 225k 12.02% 90% 
5565 16 2435 163k 11.12% 
23508 15 4621 235k 12.20% 99.7% 
(a.ll triph.) 

State-tying allows to group together triphones which 
are acoustically similar but not necessa.rily often seen. 
The consequence is that more trip hones can be mod­
eled: The trip hone coverage of the test set lexicon will 
be higher. We increased the number of triphones to 
be modelled a.nd found an optimum at 1855 triphones 
(1855*3 = 5565 states), which makes oUl' second system 
(WSJO_b, lines 3 and 4 from Table 1). This leads to 
word error rate improvements of more than 6% on the 
same set of test sets, when compared to the WSJO_a 
system, 

As stated above, the optimal number of triphones 
modelled on the WSJO material �as 1855. We give 
hereafter results while modelling all 7836 triphoncs seen 
during training. A drawback in modelling all triphones 
present in a training set is that there is no observation 
left to model backing-off monophones. During rerog­
nition, a. decision has to he t.aken: To which traiue'tl 
model will be assigned the untrained but. essential !ww 

triphone? Decision trees are often used at this place' . 

Our solution was very pragmatic: 'Ve took from 
our WS.JO_b system the 1l10nophone backing-off models, 
properly resca.led and added them to our all-triphonp 
system. As can be seen from Table 1, the word error 
rate increased significantly with respect to our VVSJO_b 
system and goes back to the WER level of our "VS.J O_a 
system. To interpret the result, it has to be observed 
that from the 7836 different trip hones occurring in the 



t.raining, 3781 occur less t.han 10 times. Our conclusion 
is that. under a certain occurrence threshold (that is 35) 
state-tying results in a splitting of rarely seen training 
lllaterial (that would otherwise be globally modelled in 
a monophone) and leads to less robust modelling. 

Table 2: Bigram word error rates on the evaluation 
test set 9:3 with and without state-tying for the same 
Huwber of dellsities ll'aining was done on WSJO+1. 

lnit. # States 5592 18276 
Cluster threshold 0 16 
# States after Tying 5722 4166 
# Densities(Male+Female) 523k 495k 

20k evaL93 II 17.7% 16.4% 

Test Set Triphone Coverage II 90% 99.6% 

The next step was to build our models on the big­
ger WSJO+ 1 training set totalizing 62 hours of speech. 
To augment the triphone coverage on the recognition 
vocabulary, we included right context dip hones to our 
triphone list (4087 triphones and 557 diphones). The 
backing-off monophone models were seen on average 
350 times. Table 2 shows that by state-tying an im­
provement in the WER by more than 7% for about 
the same alllount of densities has been achieved on the 
evaluation set of November 1993. This is mostly due 
to the trip hone coverage ratio increase on the test set, 
from 90% to 09.6%. 

3. DENSITY.CLUSTERING 

HMl'vI stat.es may share some or all component densities 
of t.heir mixture densities, if they model acoustically 
similar events. As a result of state-tying (see section 
2), complete models will be tied together. Density­
clustering on the other hand allows two different models 
to share common regions of the acoustic space (see Fig. 
1). It is done across HMIVI states and is independent 
of the previously mentioned state-tying. 

State tying Density clustering 

Figure 1: State-tying versus density-clustering. 
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Nevertheless, the motivat,ion for state-tying or densi­
t.y-clustering is basically the same: To reduce the am­
ount of parameters required to model the recognition 
vocabulary and thus the computing and memory de­
mands to make the recognition fit on cheap hardware. 

Actually, in the implementation there is no differ­
ence between state-tying and density-clustering; the 
same algorithm is applied either to single-density mod­
els (state dustering) or to the pool of mixture densities 
(density clustering). For density-clustering, we used 
an agglomerative clustering procedure together with a 
maximum likelihood criterion, which is given by 

where Ci are the observation counts and 1111 the meau­
vectors of the density-cluster Ci, i = 1, 2. 
At the beginning of the duster-algorithm each clus­
ter is equal to one density. If the two clusters C;, (,} 
have a minimum distance d( C;, Cj ), they are merged to 
a new cluster CN by adding the counts of the clusters 
CN = Ci + Cj and computing a new weighted mean-

c -'" +c ·m TI d 'f I vector mN = ' c:+c� 1 • Ie proce ure stops, I t Ie 

desired number of clusters is obtained. 
From the obt.ained clusters a tied-density inventory 

is derived. The clustering operation is part of the HMM 
training process and can be included anywhere and 
even several times within the iterative re-estimatioll of 
the model parameters. 

3.1. Small-Vocabulary Speech Recognition 

Here, small-vocabulary speech recognition is used as a. 

synonym for an acoustic modeling approach which em­
ploys hidden Markov models of words rather than of 
phonenles. The goal of density-clustering is to iden­
tify similar acoustic events across different word mod­
els, hence, the clustering algorithm works on the whole 
acoustic space. 

Table 3 shows the effects of clustering on the num­
ber of paramet.ers and on the error rat,e for experiment.s 
on the adult. speakers' port.ion of the TI/NIST Con­
nected Digits Recognit.ion Task. The different degrees 
of tying have been obt.ained by successive delll'!it.y Bplit,· 
ting and clustering steps during t.raining. For details 
on the non-tied syst.em, see [4]. In table 3 experiments 
with similar string error rate are grouped together. It. 
can be seen that. t.he number of model parameters could 
be reduced by a fador of 2 - :3 without. increase ill er­
ror rate. For a medium error rate performance range 
(1.3% - 3% string error rat.e), the results Can be st.at.ed 
alternat.ely: given t.he sanlf' number of parameters, the 
tied system achieves a 30(/(, better error rate. 



Table 3: St.ring error rate (SER) on TI Digits for vari­
ous configurat.ions 

SER [%] configurat.ion 

3.37 
O.Gk non-tied single densities 

19200 paramet.ers 

2.97 
0.3k t.ied densities, lk weights 

10600 parameters 

2.5P 
1.2k non-tied densities 

39600 paramet.ers 

2.67 O.3k tied densities, 1.6k weight.s 
11200 parameters 

1.91 2.4k non-tied densities 
7P200 pal'ameters 

1.90 0.8k t.ied densities, 3.2k weights 
28800 parameters 

1.45 4.8k non-tied densities 
158400 parameters 

1.aO 
2k t.ied densities, 10k weights 

74000 parameters 

l.lG 
9.5k non-tied densities 

304000 parameters 

1.14 5k tied densities, 18.5k weights 
178000 parameters 

0.95 
19k non-tied densities 

608000 parameters 

3.2. Large-Vocabulary Speech Recognition 

Our large-vocabulary recognition syst.em has a large 
number of densities (more t.han 80k for each gender). 
St.ate-t.ying has been done before t.raining to decide OIl 

which model to t.rain. Densit.y-clustering will be done 
at. t.he end of the training to avoid duplicate modelling 
of shared acoustic spaces. To manage the large number 
of densit.ies of our WSJ end-system and t.o keep its dis­
criminat.ive capability, only densit.ies corresponding to 
t.he same context-independent phoneme are clustered. 
Table 4 presents results on the male-speaker part of 
the "Vallstreet Journal task where t.he number of den­
sit.ies of our tied-st.ate WS.JO_b system of section 2 has 
been reduced by another 20% (from SOk to 65k) with 
only a slight. increase of the word error rate. In tot,al, 
combining state-tying and density-clustering, the num­
ber of densities was reduced fro111 122k to 65k while at 
t.he same t.ime the word error rat.e was slightly reduced 
frolll 12.!):�% t.o 12.07%. 
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Table 4: Word error [%] rates wit,hout, and wit.h 
density-clustering on different test sets for a male spe­
cific t.ied-st.ate system 

Initial # States 2208 5565 5565 
Initial Cluster thresh. 0 16 16 
# States after Tying 2208 2435 2435 
Densi ty-CI ustering NO NO YES 
# Densities (male only) 122k 80k (55k 

5kmale 
(si_evI5, si_detI5, si_dL05) 12.53 12.02 12.07 

4. SUMMARY 

State-tying allows to avoid the duplicat.ion of acous­
tically similar models. A consequence is that rarely 
seen acoustic events can be modelled t.ogether with 

more robust ones. We have observed that very rare 

events (seen less than 35 times) will weaken the Illml­
els they are tied to. Furthermore, it has been noticed 
that for state-tying, the furthest-neighbor criterion was 
superior to a maximum-likelihood criterion. Density­
clustering based on a maximum-likelihood criterion al­
lows to better model the part of the a.coustic space 
that is shared by two different models. A combination 
of the two clustering techniques leads to a reduction of 
the number of parameters by a factor of up to two and 
to a. significant error rate reduction on two tasks, t.he 
TI/NIST-connected digit and the WSJ tasks. 
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