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ABSTRACT

The interaction of Linear Discriminant Analy-
sis (LDA) and a modeling approach using continuous
Laplacian mixture density HMMs is studied experi-
mentally. The largest improvements in speech recog-
nition accuracy could be obtained when the classes
for the LDA transform were defined to be sub-phone
units. On a 12,000-word German recognition task with
small overlap between training and test vocabulary a
reduction in error rate by one fifth was achieved com-
pared to the case without LDA. On the development
set of the DARPA RM1 task the error rate was reduced
by one third. For the DARPA speaker-dependent no-
grammar case, the error rate averaged over 12 speakers
was 9.9%. This was achieved with a recognizer employ-
ing LDA and a set of only 47 Viterbi-trained context-
independent phonemes.

1. INTRODUCTION

Linear Discriminant Analysis (LDA) is a well-
known technique in statistical pattern classification for
improving discrimination and compressing the informa-
tion contents {with respect to classification) of a fea-
ture vector by a linear transformation. LDA has been
applied to automatic speech recognition tasks [1 - 6]
and resulted in improved recognition performance for
small-vocabulary systems [2], [3], [4]-

For large vocabulary phoneme-based recognizers,
the results reported do not give a clear picture. Yu et
al. [5] employed LDA to transform the feature space
(before vector quantization) of the BBN BYBLOS rec-
ognizer, a system based on context-dependent discrete
HMDMs derived from three codebooks. They defined the
50 basic phonemes as the classes to be discriminated.
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The discriminant analysis did not result in an overall
improvement. Wood et al. [6] identified the classes
with sub-phone units, so-called phonicles, which were
modeled by multivariate Gaussians. They achieved im-
proved recognition accuracy by applying the IMELDA
transform [3].

The large vocabulary speech recognizer presented
here is different from the ones above. We use context-
independent phonemes and continuous mixture density
HMMs. When employing LDA in such a framework
several design alternatives have to be considered, e.g.
what is the best definition of the classes to be discrim-
inated. In Section 2 we will describe these design con-
siderations. After a brief description of the recognition
system and the data bases in Section 3 we will describe
the design of the LDA based recognizer on the basis
of experimental results on a 12,000-word German task
(Section 4). Section 5 presents results on the DARPA
task.

2. LDA FOR PHONEME-BASED
RECOGNITION

Ignoring the time alignment problem for the mo-
ment, we regard speech recognition as a pattern classi-
fication task. The idea of LDA is to find a linear trans-
formation of feature vectors X from an n-dimensional
space to vectors Y in an m-dimensional space (m < n)
such that the class separability is maximum [7]. Scat-
ter matrices are used to formulate the optimization
problem, Two matrices Sy, S3 out of the three — W:
within-class, B: between-class, T: total scatter ma-
trix — are used where many combinations are possible.
Several optimization criteria are also conceivable, the
most widely used ones are to maximize

Jim) = tr(Sy,' Siy) (1)
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To(m) = det(Sy'Si,) (2)

where tr(A) denotes the trace of A, det(A) its de-
terminant, and S;; is the scatter matrix in the m-
dimensional y-space. We chose 5y = T, Sy = W. That
is, we consider a class-independent linear transforma-
tion of the vector space that enhances the total scatter
while keeping the within-class scatter constant.

The optimization of (1) and (2) leads to the result
that the input vector x has to be projected onto the
subspace spanned by those m eigenvectors of S{xl S1z
which correspond to the m largest eigenvalues. Note
that J; and J; lead to the same set of features and that
the criteria are invariant under any nonsingular lin-
ear transformation both in the original n-dimensional
space and in the resulting m-dimensional space. Even
the resulting features are the same irrespective of any
linear transformation in the n-dimensional space prior
to the LDA transformation.

If LDA is applied as a preprocessing step in a large
vocabulary continuous speech recognizer several ques-
tions arise. First, it has to be investigated how to ap-
ply LDA in the framework of mixture densities. The
speech recognizer under consideration employs contin-
uous Laplacian mixture densities which potentially ren-
der it incompatible with LDA. Second, it is not obvi-
ous what the most appropriate definition of classes is
that we want to discriminate. One might argue that
defining a class to be a phoneme is appropriate for
our phoneme-based recognizer. However, arguments
for different class definitions can also be found. Cur-
rently, our understanding of the intricate interactions
between LDA and the modeling approach is such that
these questions can only be answered on an experimen-
tal basis.

3. SYSTEM DESCRIPTION AND DATA
BASE

The system is a phoneme-based speaker-
dependent continuous speech recognizer using Lapla-
cian mixture density HMMs. There is a set of 40 -
50 monophones each of which consists of 3 sub-phone
units, which we called “phoneme segments”. Each seg-
ment consists of two states which have the same emis-
sion probability density attached to them. The acous-
tic resolution is controlled by the number of elementary
densities per mixture which is chosen to be at least 30
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densities per mixture on the average. A vector of abso-
lute deviations is pooled over all elementary densities of
all mixtures. The Viterbi criterion, i.e. the most likely
state sequence, is used both in training and recognition

[8].

In the preprocessing stage of the recognizer a 30—
channel FFT-based filter bank is used. These 30 log-
energy intensities together with 15 first-order (30ms
time span) and 15 second-order (60ms time span) time
differences, the average intensity and its time differ-
ences, form a 83—component acoustic vector (8]. This
analysis is carried out every 10ms. When LDA is ap-
plied, adjacent 63—component vectors may be adjoined
to form an augmented vector for the subsequent LDA-
transform. As the output of the LDA transform, 35
components are retained.

We carried out recognition experiments on two data
bases. The first is a German business correspondence
task with a 12,306-word recognition vocabulary. The
training is based on 300 sentences comprising 2735
words (about 20 min of speech). The recognition tests
are performed on a set of 50 sentences comprising 1099
words. There is only a small overlap between train-
ing and test vocabulary. All sentences were recorded
for each of 4 speakers. The sentences were read but
there was no attempt to enforce careful pronunciation
and high signal-to-noise ratio. To account for varia-
tions in the recording conditions it turned out to be
very important to normalize the acoustic vector with
respect to an estimate of the long-term spectrum. The
stochastic language model was a unigram model of test
set perplexity 1831.

The second data base is the well-known DARPA
resource management task RM1 which is available on
CD-ROM. Details of this task can be found elsewhere,
e.g. [9].- We present results on the 100-sentence devel-
opment set averaged over 12 speakers.

4. LDA DESIGN AND RESULTS ON
GERMAN TASK

We performed various experiments to determine
the parameters of the LDA transform. In a first exper-
iment we investigated the interaction of LDA and our
modeling approach which employs mixture densities.
It turned out that it is not sufficient to transform the
centroids of the elementary densities, which had been
determined in a training procedure based on the origi-
nal non-transformed feature vectors, to obtain suitable



Table 1: Word error rates in % (tot = del + ins +
sub) for different class definitions:

A: Baseline system without LDA;

B: Class = phoneme;

C: Class = mizt. density (= phoneme segment);
D: Class = elementary density.
In (B - D), 35 components are retained after transfor-
mation. " B
Speaker del | ins | tot |[ del | ins | tot
M-21 26|24 (194 | 25 (1.6 17.7
M-22 3.2 (32231 24/(24]|197
M-24 5425|278 | 6.3 | 1.5 | 26.8
M-25 16|18 |16.3 || 1.8 | 2.1 | 17.2
Average 21.7 20.3
C D
Speaker del | ins | tot || del | ins | tot
M-21 25110159 | 22| 1.4 | 16.3
M-22 25 122|179 || 25| 2.1 | 19.7
M-24 54|25 |27.01| 46 | 1.6 | 25.1
M-25 1.5 (23153 | 1.3 |24 155
Average 19.0 19.1

reference vectors in the transformed space. LDA in-
volves a simultaneous diagonalization of two matrices
which consists of a rotation plus scaling (“whitening
transformation”) followed by a second rotation. Be-
cause of the scaling step, the centroids resulting from
a training based on non-transformed data may not be
chosen optimally. However, in a new training working
on the transformed input data the centroids of the ele-
mentary densities can be chosen such that they better
fit the transformed data. Therefore, a 3-step train-
ing procedure is used: to obtain a segmentation for the
training data, we first estimate the speech models using
our standard training techniques and then segment the
data automatically using the recognizer constrained to
find the correct word sequence. In the second step the
recognized segment boundaries are then used to assign
class labels to each frame. Within-class and total scat-
ter matrices are estimated and the LDA transformation
matrix is computed. The third step is a new Viterbi
based mixture density training with the transformed
feature vectors at the input.

In another set of experiments we tested different
class definitions to be used in LDA. Table 1 summarizes
the results for each of four speakers with a unigram
language model of test set perplexity 1831.

Experiment A is the baseline system without LDA
preprocessing. In experiment B the classes used were
the 44 basic phonemes which is the same class defi-

I-15

nition as in [5]. In C, a finer resolution was chosen.
Similar to [6], a class was defined to be one of the 3*44
phoneme segments. Recall from Section 3 that each
segment is modeled by a unique mixture density. Fi-
nally, a class was associated with an elementary den-
sity in experiment D. Since a mixture consists of 30
elementary densities on the average, a total of about
4000 classes results.

For each choice of class definition we achieved an
improvement over the baseline system without LDA.
However, identifying a class with a phoneme — which
is the class definition used in [5] — yields the least im-
provement. From these results we decided to associate
a class with a phoneme segment (i.e. method C) since it
performs equally well as associating a class with an el-
ementary density, however the estimation of the trans-
formation matrix is less time consuming.

Next we adjoined adjacent input frames to an aug-
mented vector prior to the transformation. We could
improve our results with a one-frame (63-component)
vector by a three-frame splicing: 3 adjacent frames
were used to form a (3*63)-component vector. Because
of our choice of time differences (see Section 3) such an
augmented vector covers a 90ms time window. After
the transformation, we retained again 35 components.
Table 2 shows that we could improve the error rate
from 19.0% to 17.9%.

Table 2: Word error rate (in %) for 3-frame splicing.

Speaker || del | ins | tot
M-21 1.8 | 1.4 | 15.0
M-22 24 | 23| 18.1
M-24 4.5 [ 2.0 | 25.0
M-25 1.4 | 1.6 | 13.5

Average 17.9

5. RESULTS ON DARPA RESOURCE
MANAGEMENT TASK

Unlike the German data base used in the last
section, the DARPA RM1 task is characterized by
a large vocabulary overlap between training and test
data. This circumstance favors the use of highly spe-
cialized models which are able to memorize fine details
of the training material but which might not have great
generalization capability. Thus very good results had
been obtained by using both intra-word and inter-word
context-dependent phones, see e.g. [10].



The type of acoustic modeling used here is different.
We keep the 47 basic context-independent phonemes
and increase the acoustic resolution by allowing for
more elementary densities per mixture. This method
does neither increase the complexity of the recognition
algorithm nor the cost of the search for the correct word
sequence. It only increases the effort for the computa-
tion of the local log-likelihood of an acoustic event.

Table 3 presents the results for the speaker-
dependent development test section of RM1 which
comprises 12 speakers who spoke 100 sentences each,
amounting to 10,242 words in total. The results given
are for the no-grammar case.

Table 3: Word error rate (in %) for speaker depen-
dent DARPA RM1 task, no-grammar case. (3*63)-
component input vector has been reduced by LDA to

35 components. Numbers are average over 12 speakers.
dex_nsmes / | densities del | ins | tot
mixture (total)
No LDA 30 4000 28|24 1858
LDA 30 4000 1.6 | 1.7 | 13.2
LDA 150 20500 1.2 (1.1 9.9

With the baseline system without LDA and an
acoustic resolution of on the average 30 elementary den-
sities per mixture the error rate was 18.6%. Employing
LDA reduced the word error rate to 13.2%. Further sig-
nificant improvement could be achieved by increasing
the acoustic resolution to about 150 densities per mix-
ture. An average error rate of 9.9% was obtained. This
result is only 1.5% worse than the results published in
[10], and it was achieved with a recognizer which does
not use any explicit context-dependent modeling, nei-
ther within words nor across words.

6. CONCLUSIONS

Defining sub-phone units as classes to be discrim-
inated in the LDA transform proved most effective for
a continuous mixture density based speech recognizer.
On a 12,000-word German task with small vocabulary
overlap between training and test, the error rate was
reduced by 18% by applying LDA. On the DARPA task
with its closed vocabulary a reduction by one third was
achieved. The currently best result using no context-
dependent models is an average error rate of 9.9% for
the speaker-dependent no-grammar case. Currently we
are trying to improve our results by employing context-
dependent phone models.
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