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ABSTRACT

In a large vocabulary continuous speech recognition task the
search for the "best" (in the maximum-a-posteriori sense) word
sequence is the most (computing) time consuming part of the
system. End-of-word hypotheses are created almost every time
frame. With a stochastic language model every lexicon entry is
an admissible successor candidate. By using a "fast match”
module which scores the word candidates according to their
acoustic feasibility ahead of the current time frame, the search
cost can be considerably reduced. Only the fraction of the
words with favourable fast match scores will be further proces-
sed in the detailed match, where the likelihood of a segment of
acoustics given the word model is computed. We derive a novel
word selection strategy which is "consistent” in the sense that it
introduces no additional decoding errors and which still reduces

the search space by a factor of 2 - 3 compared to standard -

Viterbi beam search. Giving up the consistency requirement,
pruning strategies can be deduced which further reduce the
search effort significantly: the size of the word startup list is
reduced to 2% - 4% of its original size with a modest increase in
error rate by 1% - 2%.

1. INTRODUCTION

In a large vocabulary speech recognition system using Hidden
Markov models the output word is chosen to be the one that has
the maximum a-posteriori probability given the input acoustic
observation. This involves calculating the likelihood of the
observed acoustic events given the models for each word in the
vocabulary. When the vocabulary is very large this results in
large decoding times which are far from real time on a modest
amount of hardware.

"Fast match” methods are aimed at speeding up the recognition
process by curtailing the list of word candidates to a fraction of
the total lexicon size - while, at the same time, ideally intro-
ducing no additional decoding errors. These word candidates
must be considered each time an end-of-word hypothesis has
been created. This is accomplished by scoring word hypotheses
based on their acoustic similarity with the signal portion ahead
of the current time frame. Various implementations based on
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different principles have been reported in the literature, e.g.
{1-5]. They mainly differ in the way the fast match scores are
obtained. Some methods rely on dynamic programming [3,4]
whereas others avoid it [1,2]. Most implementations employ
some sort of "coarse" acoustic models which allow a faster cal-
culation of the rapid match scores than the complete models
used in the detailed match.

A "consistent” fast match is described in [5]. Consistent means

that the reduction of the size of the word startup list will not

introduce additional recognition errors. This is achieved in a

two-step method where first an upper bound on the likelihood is

computed for each lexicon entry and second the detailed match

is evaluated for the word candidate with the best upper bound.

All words whose upper bound on the likelihood is smaller than
this likelihood obtained by the detailed match can safely be dis-

carded.

In our approach we use the detailed phoneme models for the
rapid match. The computational overhead introduced by the
look-ahead is still small since we use a tree organization of the
lexicon, employ a "streamlined” dynamic programming algo-
rithm including beam pruning, and reuse the calculated distan-
ces for the detailed match and successive rapid matches. Since
exact look-ahead scores ("'score” corresponds to negative log-
likelihood, i.e. the smaller the score the higher the likelihood)
are available a consistent preselection process is feasible. In
Section 2 we describe the data base and the system environment
for the recognition experiments. Section 3 contains details of the
fast match technique, and Section 4 presents experimental
results. '

2. THE RECOGNITION SYSTEM ENVIRONMENT

The system under consideration is a phoneme-based speaker-
dependent continuous speech recognizer with a 12,300-word
(German) recognition vocabulary [6].

Training and test data are read speech recorded in an office envi-
ronment. The training data consists of 300 sentences (200 short
phonetically balanced sentences and 100 long sentences ob-
tained from business correspondence) comprising 2734 words.
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The test corpus consists of 50 sentences of business comrespon-
dence amounting to 1099 words.

We use a pronounciation dictionary with 43 context-indepen-
dent phonemes and a silence model. They are represented by
Hidden Markov Models of typically 6 states per phoneme and
continuous mixture densities. Details of the preprocessing and
the HMM's can be found elsewhere [6,7].

The system employs the Viterbi approximation (most likely state
sequence) both in training and recognition. The search is a data-
driven one-pass dynamic programming search with a potential
search space of roughly 650,000 states. To achieve manageable
decoding times beam pruning is used and the partial sentence
hypotheses are list-organized such that only a (varying) fraction
of the total number of states has to be considered every 10ms
time frame.

We use a unigram or bigram language model. In this report we
only apply a unigram model with test set perplexity of 1831.

3. DESCRIPTION OF THE FAST SELECTION
ALGORITHM

3.1 A Consistent Word Selection Algorithm

In previous approaches [1-5] the fast match module computes
approximate scores which gauge the acoustic probability of each
word in the anticipatory interval. A word is considered a valid
candidate for startup if its rapid match score is below some
threshold. Since we use the exact phoneme models in the fast
match stage the look-ahead (LA) score contains more informa-
tion than would be exploited if it were only used to be compared
to a threshold. When combined with the detailed match score a
consistent pruning strategy is attainable.

Let Sy(I+1:I+Al) denote the acoustic LA score of the word w
for the anticipatory interval [I+1,I+AI]. Let further
SEv1mvn(1:I) be the score of the partial sentence hypothesis
containing the words v1,...,vp starting in time frame 1 and
ending in I with the end of word vy, (the superscript "E" denotes
word end). Then

Svi..vn,w(LI+AD = SEy1 yn(L:D) + Sw(I+1:1+AI)

+ SLM(WIv1,...vn) M

is the score of the partial sentence hypothesis vi,...,vn,w at
time frame (I+AI) which assumes a word boundary from word
vn to word w at frame 1. S| M(WIv1,..,vn) denotes the language
model score (assuming an n-gram language model). With

Smin{) = min S(1:I)
Smin,LAI+1:1+A]) = min {Sw(I+1:I+AD+SLM(WIV1,...,vn)}

- where the first minimum is taken over all partial sentence
hypotheses at frame I (time-synchronous minimum of all hypo-
theses at time frame I) and the second over all words w and pre-
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ceding word sequences of arbitrary length n - the following
inequality holds

Smin() + Smin, LAI+1:I+Al) 2 Smin(I+Al) )

where Smin(I+AlI) is the minimum score of all hypotheses at
time frame (I+AlI). Partial sentence hypotheses not indicating a
word boundary at frame I may or may not result in a better (=
smaller) score at frame (I+Al).

Now it is evident how to obtain a consistent pruning strategy:
being at time frame I, add word w to the word startup list if

SEy1. vn(L:D) + Sw(I+1:14AI) + SLM(Wv1,..,vp) -

(Smin(D) + Smin,LAI+1:1+AD) < T €

where T is the pruning threshold which is used for the conven-
tional bearmn pruning in the detailed match.

This pruning is consistent in the sense that a word that will not
be placed on the word startup list could have never survived the
beam pruning in the detailed match if it had been placed on the
startup list.

Note that the LA pruning and the beam pruning of the detailed
match are not independent of each other. The stronger the beam
pruning the stronger will be the LA pruning. Thus the size of
the word startup list is automatically adjusted to a change in the
beam pruning threshold. No manual adjustment is required.

Further note that the number of word startups depends on the
likelihood of the word boundary at frame 1. If Smin(I) is smal-
ler than the score of the hypothesis that signals a word boun-
dary at frame I then fewer words will be included in the word
startup list than if the two scores were equal.

Language model recombination will be performed before word
startup. In case of an unigram language model this is particu-
larly simple. Since then S| M(wiv1,..,vn) = SLM(W) the star-
ting score for word w will be min(SEvl_._vn(l:I) + SLM(W))
where the minimum is taken over all hypotheses that indicate a
word boundary at frame I. .

The larger the anticipatory interval length Al is chosen the more
word candidates will be pruned and the higher will be the com-
putational cost of the LA calculation (see Section 4). The second
conclusion is obvious. The first is readily seen when Eq. (3) is

" rearranged:

{SEy1..va(1:D) + SLM(WIV1,...vn) - Smin(D)) +
{Swd+1:1+A]) - Smin, LAI+1:1+AD} < T

Whereas the terms in the first pair of braces are independent of
the anticipatory interval length Al the terms in the second pair
will increase with increasing Al. Due to the Markov Model
assumptions the local contributions to the overall score that are
added per time frame are independent and random. Therefore
the variance of Sy increases with increasing AI ("random
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walk"). Thus, for a given Al, the probability that Sy falls
within a fixed range whose width is independent of Al
decreases with increasing Al

3.2 Details of Implementation

3.2.1 Tree Organization of the Lexicon

For the detailed match the recognition vocabulary is stored in a
simple table which, for each word, contains its phonetic tran-
scription. In our case this means storing 110,000 phonemes for
the 12,300 words of the vocabulary. However, more efficient
storage and decoding can be achieved if the phonetic transcrip-
tions for all the words are arranged into a tree [3,4] since many
words in a large vocabulary will begin with the same initial
sequence of phonemes. In the tree structure each arc corre-
sponds to a phoneme, and each leaf to a word. Our lexical tree
comprises 43,000 arcs which means a reduction factor of 2.6
versus the table organization. Table 1 gives the number of arcs
in the first 5 layers (generations) of the tree

layer 1 2 3 4 5
#arcs 28 331 1511 3116 4380

Table 1: Number of tree arcs for the first 5 layers of the
tree-organized lexicon.

If the anticipatory interval length corresponds to the first two
layers of the tree then (28+331)*6 states have to be considered
per time frame in the tree organized search versus 12300%12
states for the simple table organization!

3.2.2 Scoring for Look-Ahead Calculation

For each word w the look-ahead score Sw(I+1:1+AI), which is
required at time frame I, is obtained by time-aligning the
succeeding Al input frames with the Markov Models of the
phonemes. We chose the maximum number of states, NJ, that
can be traversed during the anticipatory interval of length Al to
be

NI =2/3 Al

since preliminary experiments showed that for our phoneme
models there are on the average 1.5 frames assigned to a state.
Each word is given a look-ahead score as the minimum score of
its initial phoneme sequence using a dynamic programming
(DP) algorithm working on the tree-organized lexicon. The
look-ahead score is defined as the minimum (= best) score of all
path hypotheses which may either end in state NJ or in frame
(I+AI) - where hypotheses of different length have to be first
normalized (divided by their length in frames) before they can
be compared. The minimum LA score Smin, LA(I+1:I+Al) is,
however, chosen to be the minimum score of all hypotheses that
end in frame (I+Al) (time-synchronous minimum).
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To reduce the amount of computation for the rapid match beam
pruning with a carefully chosen pruning threshold is also
applied to the fast match computation. Note that there is no need
for trace-keeping and traceback as in the detailed search since
the only objective is to obtain the look-ahead score for each
word. To further reduce the computational effort the fast match
routine is called at most every other time frame. If an end-of-
word hypothesis is created in the intermediate frame the most
recent look-ahead scores are used.

Due to these simplifications we actually do not compute
Sw(I+1:I+AI) but rather a (very good) estimate of it.

3.2.3 Detailed Phoneme Models

The DP performed during the fast match incorporates the
detailed phoneme models. Therefore the distances calculated can
later be used in the detailed match (and in successive fast match
calls). Apart from some storage instructions, there are no addi-
tional costs by distance calculations because the distances calcu-
lated during fast match would have to be computed anyway
even in the absence of a fast match.

4. EXPERIMENTAL RESULTS

4.1 Consistent Look-Ahead

We have run experiments to check the validity of the approxi-
mations of Section 3.2.2 to the consistent word startup pruning
strategy and to assess the effectiveness of the pruning. The
"correctness” of the pruning is measured by the recognition
error rate and the effectiveness or speed-up is measured by the
average number of gridpoints (= states) to be evaluated per
frame and by the average size of the word startup list.

Table 2 presents the results (for one speaker) for a recognition
experiment with and without look-ahead. The anticipatory
interal length was chosen to Al = 13 frames and NJ = 9 states
which corresponds to approximately 1.5 phonemes. The
recognition error rate remained unchanged when the look-ahead
was employed. However we observed that for 3 of the total of
50 sentences there were differences in the detected word
boundaries and different errors than in the case of no LA. The
minimum score of these sentences was slightly larger.

without LA with LA
gridpoints 45000 18000
gridpoints (LA) - 1000
word startups 10650 1900
errors: de./ins/sub 27/24/161 25/25/162
error rate 19.3% 19.3%

Table 2: Recognition results with and without "consistent" LA
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If no fast match is applied the average number of word startups
is 10650 which is somewhat less than the vocabulary size
because end-of-word hypotheses and therefore word startups
do not occur in every time frame. If the fast match module is
used the word startup list size is reduced by a factor of 5.6 and
the number of gridpoints by 2.5 and 2.4, respectively, when the
number of gridpoints required for LA is included. From this
and similar results for other speakers we concluded that the
approximations of Section 3.2.2 to the consistent pruning are
legitimate.

To achieve larger speed-up we tried out more stringent pruning

strategies derived from this consistent method, which, how-
ever, no longer guarantee consistency.

4.2 Alternative Pruning Strategies

In Section 3.2.2 we noted that the minimum LA score

Smin, LA+ 1:I+AI) is defined as the time-synchronous mini--

mum of all hypotheses at the end of the anticipatory interval
(I+AI). On the other hand the look-ahead score of some word w
is calculated as the best score of all path hypotheses for that

" word that end either in state NJ or at the end of the anticipatory
interval (I+Al). If, in the same manner, Smin,LA(I+1:I+AI) is
chosen as the minimum of these LA scores then the resulting
value will be equal or smaller than before resulting in more
stringent pruning when used in (3). Note, however, that the
pruning is no longer consistent! Table 3 presents the experimen-
tal results for different anticipatory interval lengths.

NJ= 9NJ=15 NJ=21 NI =27 NJ=33
Al=13 AI=23 Al=30 AI=40 Al=50
gridpts 11300 7400 6100 5000 4400
gridpts (LA) | 1000 2600 3500 4500 5000
total 12300 10000 9600 9500 9400
word startups| 700 350 260 190 150
error rate 203% 20.4% 204% 21.0% 22.1%

Table 3: Performance of LA for different anticipatory
interval lengths

The total number of gridpoints to be evaluated is a good
measure for the overall search cost since it includes fast and
detailed match. Note that the average number of gridpoints to be
evaluated per frame, and in particular the number of word
startups could be considerably reduced - at the expense of an
increase of the error rate by 1% - 3%, though. Larger anticipa-
tory interval lengths lead to greater reductions in the search
effort but also to a larger increase of the error rate.
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Table 4 summarizes results for 3 different speakers without LA
and with LA with parameters NJ = 21, Al = 30 which we con-
sidered a good compromise between speed-up and correctness.

Speaker MO021 M022 M024
a)

gridpts 45000 50000 60000
word startups 10650 10660 11250 -
erTor rate 19.3% 25.0% 31.9%
b)

gridpts 6100 6700 13000
gridpts (LA) 3500 4200 6000
total 9600 10900 19000
word startups 260 270 450
error rate - 20.4% 26.3% 33.3%

Table 4: Recognition results for 3 speakers:
a) without LA b) with LA
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