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Recap: optimal control and constraints

Real-world systems are always subject to certain state constraints X and input limitations I/.
Violating those can lead to safety issues.
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Fig. 14.1: MPC scheme (source: www.wikipedia.org, by Martin Behrendt CC BY-SA 3.0)
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https://de.wikipedia.org/wiki/Model_Predictive_Control
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Application examples with safety-relevant constraints

Collaborative robot
control (source:
www.wikipedia.org,
CC BY-SA 4.0)

Autonomous car
driving (source:
* www.wikipedia.org,
CC BY-SA 4.0)

Medication control

Energy system (source:
control www.wikipedia.org,
CC BY-SA 4.0)
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Safety levels
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Fig. 14.2: Different levels of safety (derived from L. Brunke et al., Safe Learning in Robotics: From
Learning-Based Control to Safe Reinforcement Learning, Annual Review of Control, Robotics, and
Autonomous Systems, 2022)
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Bird's eye view on RL concepts integrating safety

Environment Tk

6\, 9" Cé/o/7
Tk Environment U k

Safety indicator

Reward ; ™
Interpreter Interpreter Shield
Tk Sk
u
obsu’i \cgJ Obs Yk \(?—'j
erVatiOn ervatiOn 1

Action
2
D
s
Q
43
>

3
1
Agent Agent
(b) Safety shield: use a priori or learned
model knowledge of the environment to
make predictions identifying actions
leading to unsafe situations

(a) Safety critic: add a critic which
indicates to which extent the current data
sample fits to a safe situation
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Achievable safety levels and model knowledge

constraints are
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Fig. 14.3: Safety and model knowledge map (derived from L. Brunke et al., Safe Learning in Robotics:
From Learning-Based Control to Safe Reinforcement Learning, Annual Review of Control, Robotics, and
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Autonomous Systems, 2022)
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Energy system control application
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(a) Example microgrid that can be emulated in

Methanation b

the LEA Microgrid Laboratory.
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Load

(b) Application under investigation: Three-phase
grid-forming inverter disturbed by stochastic load
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https://ei.uni-paderborn.de/lea/research/forschungsprojekte/intelligent-energy-systems/microgrid-laboratory

Reference tracking with disturbance rejection
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Fig. 14.4: Simulation setting with environment
modeled using OpenModelica Microgrid Gym
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https://github.com/upb-lea/openmodelica-microgrid-gym

Reward design for grid-forming inverter
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Fig. 14.5: Reward function 14.2 for different
reference and measured voltages and currents
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» Three cases, depending on operation point

MRE (v, v*),
r = { MRE(vg, v*) + f(if), (14.2)
1, @

> B ve < Ulim A if < dnom

> (B) vc < Viim A tnom < i < i
» (C) otherwise

» Linear punishment term f(i¢)
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Reference tracking with disturbance rejection using saftey shield
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» Safety shield: Ensure that action does not
cause state limit violation in future system
trajectories
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Such a state action pair is called feasible
Calculation of feasible set requires a model

on Training data can be utilized to identify model
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Here, recursive least squares (RLS) is applied

Fig. 14.6: Safety shield based on feasible set
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Saftey shield based on feasible set - proof of concept (1)

— DDPG  —— DDPGss  —— DDPGscpus » Three different approaches
LT » DDPG: Agent without safety shield
=
S} » DDPGgqa: Agent with safety shield using
2 perfect a priori knowledge
'\gwl' » DDPGgc ris: Agent with safety shield
§ without a priori knowledge, identifying model
8wy using RLS
Uo 10 T TR T S TR » Five agents trained per approach
k
» Results in D. Weber et al., Safe
Fig. 14.7: Accumulated unsafe events Reinforcement Learning-Based Control in
(overcurrent/-voltage) per trainingstep k Power Electronic Systems, 2023
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Saftey shield based on feasible set - proof of concept (2)
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Fig. 14.8: Blackstart after training using DDPGsq ris
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Real-time implementation aspects (1)

cpu Z[m]
I

Fig. 14.9: DDPG implementation example (derivative work of Fig. 1.1 and wikipedia.org, CCO 1.0)
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https://commons.wikimedia.org/wiki/File:Multi-Layer_Neural_Network-Vector.svg?uselang=de
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Real-time implementation aspects (2)

RL mini-batchss training step

Real-time control interval |

smooth and small changes over time due to

gradient-based learning and step size tuning

Exemplarary actor weight

— > —t—t—t—t—t+—t—>
k k41 k+n k=0 k= 1000n
(2) Real-time control requirement vs. learning (b) Typical evolution of RL parameter weights
time during learning
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Application example: deep Q direct torque control
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Fig. 14.10: Deep Q direct torque control schematic
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The DQ-DTC is basically a DQN

Sampling time of the plant system is
Ty =50 s

DQN inference, safeguarding and
system identification must fit into 7

Source: M. Schenke et al., Finite-Set
Direct Torque Control via Edge
Computing-Assisted Safe
Reinforcement Learning for a
Permanent Magnet Synchronous
Motor, 2023


https://www.techrxiv.org/articles/preprint/Finite-Set_Direct_Torque_Control_via_Edge_Computing-Assisted_Safe_Reinforcement_Learning_for_a_Permanent_Magnet_Synchronous_Motor/22032578
https://www.techrxiv.org/articles/preprint/Finite-Set_Direct_Torque_Control_via_Edge_Computing-Assisted_Safe_Reinforcement_Learning_for_a_Permanent_Magnet_Synchronous_Motor/22032578
https://www.techrxiv.org/articles/preprint/Finite-Set_Direct_Torque_Control_via_Edge_Computing-Assisted_Safe_Reinforcement_Learning_for_a_Permanent_Magnet_Synchronous_Motor/22032578
https://www.techrxiv.org/articles/preprint/Finite-Set_Direct_Torque_Control_via_Edge_Computing-Assisted_Safe_Reinforcement_Learning_for_a_Permanent_Magnet_Synchronous_Motor/22032578
https://www.techrxiv.org/articles/preprint/Finite-Set_Direct_Torque_Control_via_Edge_Computing-Assisted_Safe_Reinforcement_Learning_for_a_Permanent_Magnet_Synchronous_Motor/22032578
https://www.techrxiv.org/articles/preprint/Finite-Set_Direct_Torque_Control_via_Edge_Computing-Assisted_Safe_Reinforcement_Learning_for_a_Permanent_Magnet_Synchronous_Motor/22032578

Fast neural network inference
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Fig. 14.11: Conceptual comparison of CPU and FPGA

evaluation of a neural network
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Each neuron has the same job
Yng+1 = F (Y wni+bny)

CPU must evaluate each neuron
sequentially

FPGA can evaluate each neuron at
the same time

Maximum number of parallel
computations is limited



Edge reinforcement learning
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Fig. 14.12: Our edge reinforcement learning pipeline
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Demonstration video

Youtube link: Coffee machine vs. deep Q direct torque control
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https://www.youtube.com/watch?v=hQ49Mc6LV78
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Meta reinforcement learning - the setting (1)
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(b) Solution approach: treat the
environment as partially observable,
distinguishing details are not directly

available

(a) General problem class is similar, environments
only differ in some characteristics, the agent could
transfer learned behavior

N
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Meta reinforcement learning - the setting (2)

a) Recurrent networks

» The agent must have some b) Context networks

mechanism that allows adaptation to Ok—he ——>
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Fig. 14.13: Different concepts of meta learning
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Usage in electric drive control: classical agent
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Fig. 14.14: Each agent must be trained individually — huge effort
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Usage in electric drive control: meta agent
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Fig. 14.15: One agent to control them all — effort is limited and independent of the number of
controlled environments
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Our setup

Meta Reinforcement Learning Agent
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Fig. 14.16: A meta learning concept that we implemented

successfully
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Evaluation on (very) different motors
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» Application of RL on technical systems comes with many challenges, e.g.,
» Safety limits,
» Real-time / computational constraints,
» Varying and/or partially unknown environments.
> Real-world implementations often require more than bare RL algorithms, e.g.,
» Integration of available a priori expert knowledge,
» Combination with model-based control engineering tools.
» |deal integration of data-driven RL solutions together with expert-based control
engineering parts is subject to many open research question.
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