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Recap: optimal control and constraints

Real-world systems are always subject to certain state constraints X and input limitations U .
Violating those can lead to safety issues.

v∗k = max
uk

Np∑
i=0

γirk+i+1(xk+i,uk+i) ,

s.t. xk+i+1 = f(xk+i,uk+i), xk+i ∈ X , uk+i ∈ U .

(14.1)

...

Fig. 14.1: MPC scheme (source: www.wikipedia.org, by Martin Behrendt CC BY-SA 3.0)
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Application examples with safety-relevant constraints

Collaborative robot
control (source:

www.wikipedia.org,
CC BY-SA 4.0)

Autonomous car
driving (source:

www.wikipedia.org,
CC BY-SA 4.0)

Energy system
control

Medication control
(source:

www.wikipedia.org,
CC BY-SA 4.0)
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Safety levels
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No violation
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Fig. 14.2: Different levels of safety (derived from L. Brunke et al., Safe Learning in Robotics: From
Learning-Based Control to Safe Reinforcement Learning, Annual Review of Control, Robotics, and

Autonomous Systems, 2022)
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Bird’s eye view on RL concepts integrating safety
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(a) Safety critic: add a critic which
indicates to which extent the current data

sample fits to a safe situation
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(b) Safety shield: use a priori or learned
model knowledge of the environment to
make predictions identifying actions

leading to unsafe situations
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Achievable safety levels and model knowledge
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Fig. 14.3: Safety and model knowledge map (derived from L. Brunke et al., Safe Learning in Robotics:
From Learning-Based Control to Safe Reinforcement Learning, Annual Review of Control, Robotics, and

Autonomous Systems, 2022)
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Energy system control application

(a) Example microgrid that can be emulated in
the LEA Microgrid Laboratory.

+

+

L
oa
d

(b) Application under investigation: Three-phase
grid-forming inverter disturbed by stochastic load
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Reference tracking with disturbance rejection
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Fig. 14.4: Simulation setting with environment
modeled using OpenModelica Microgrid Gym

▶ Cont. state- and actionspace

▶ Deep deterministic policy gradient agent

▶ Gird-forming inverter

▶ Stochastic load acts as disturbance

▶ State per phase: xk = [if , vC ], vi = vDC · uk
▶ rk = f(vC, v

∗, if) ∈ [1,−0.75]

▶ sk = −1, if limit (if or vC) is exceeded
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Reward design for grid-forming inverter
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Fig. 14.5: Reward function 14.2 for different
reference and measured voltages and currents

below nominal current

▶ Three cases, depending on operation point

r =


MRE(vC, v

∗), A○
MRE(vC, v

∗) + f(if), B○
−1, C○

(14.2)

▶ A○ vC ≤ vlim ∧ if ≤ inom
▶ B○ vC ≤ vlim ∧ inom ≤ if ≤ ilim
▶ C○ otherwise

▶ Linear punishment term f(if)
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Reference tracking with disturbance rejection using saftey shield
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Fig. 14.6: Safety shield based on feasible set

▶ Safety shield: Ensure that action does not
cause state limit violation in future system
trajectories

▶ Such a state action pair is called feasible

▶ Calculation of feasible set requires a model

▶ Training data can be utilized to identify model

▶ Here, recursive least squares (RLS) is applied
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Saftey shield based on feasible set - proof of concept (1)
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Fig. 14.7: Accumulated unsafe events
(overcurrent/-voltage) per trainingstep k

▶ Three different approaches

▶ DDPG: Agent without safety shield

▶ DDPGSG: Agent with safety shield using
perfect a priori knowledge

▶ DDPGSG,RLS: Agent with safety shield
without a priori knowledge, identifying model
using RLS

▶ Five agents trained per approach

▶ Results in D. Weber et al., Safe
Reinforcement Learning-Based Control in
Power Electronic Systems, 2023

Oliver Wallscheid RL Lecture 14 12



Saftey shield based on feasible set - proof of concept (2)
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Fig. 14.8: Blackstart after training using DDPGSG,RLS

▶ DDPGSG,RLS agent trained for
150000 steps

▶ RLoad changes every step based on
random process

▶ Additional events – load steps and
drifts – trigged randomly
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Real-time implementation aspects (1)

Memory

CPU

FPGA

GPU

Mini-Batch

Critic Actor

NoiseReal timeBackground

Fig. 14.9: DDPG implementation example (derivative work of Fig. 1.1 and wikipedia.org, CC0 1.0)
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Real-time implementation aspects (2)

...

Real-time control interval

RL mini-batch training step

(a) Real-time control requirement vs. learning
time
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smooth and small changes over time due to 
gradient-based learning and step size tuning

(b) Typical evolution of RL parameter weights
during learning
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Application example: deep Q direct torque control

Fig. 14.10: Deep Q direct torque control schematic

▶ The DQ-DTC is basically a DQN

▶ Sampling time of the plant system is
Ts = 50µs

▶ DQN inference, safeguarding and
system identification must fit into Ts

▶ Source: M. Schenke et al., Finite-Set
Direct Torque Control via Edge
Computing-Assisted Safe
Reinforcement Learning for a
Permanent Magnet Synchronous
Motor , 2023
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Fast neural network inference

Fig. 14.11: Conceptual comparison of CPU and FPGA
evaluation of a neural network

▶ Each neuron has the same job
yn,l+1 = f(y⊤

l wn,l + bn,l)

▶ CPU must evaluate each neuron
sequentially

▶ FPGA can evaluate each neuron at
the same time

▶ Maximum number of parallel
computations is limited
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Edge reinforcement learning

Fig. 14.12: Our edge reinforcement learning pipeline

▶ Backward pass / learning steps are
outsource to workstation

▶ Communication between test bench
and workstation is based on TCP/IP

▶ Backward pass is generic and has no
time constraints → low application
effort
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Demonstration video

Youtube link: Coffee machine vs. deep Q direct torque control
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Meta reinforcement learning - the setting (1)
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only differ in some characteristics, the agent could
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(b) Solution approach: treat the
environment as partially observable,
distinguishing details are not directly

available
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Meta reinforcement learning - the setting (2)

▶ The agent must have some
mechanism that allows adaptation to
the specific environment

▶ This means, the distinguishing details
must be extracted in some way

▶ Usually, they can be retrieved from a
larger set of observations

Fig. 14.13: Different concepts of meta learning
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Usage in electric drive control: classical agent

Motor 1 Motor 1RL AgentRL Agent

Motor 2 Motor 2RL AgentRL Agent

Motor 3 Motor 3RL AgentRL Agent
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Fig. 14.14: Each agent must be trained individually → huge effort
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Usage in electric drive control: meta agent

MRL AgentMRL Agent

Training Field 
application

Set of 
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Known 
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Motors

Fig. 14.15: One agent to control them all → effort is limited and independent of the number of
controlled environments
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Our setup

▶ Make use of context network

▶ Generate context z with a fix set
of observations → z = const.

▶ Source: D. Jakobeit et al.,
Meta-Reinforcement
Learning-Based Current Control
of Permanent Magnet
Synchronous Motor Drives for a
Wide Range of Power Classes,
IEEE TPEL, 2023

Fig. 14.16: A meta learning concept that we implemented
successfully
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Evaluation on (very) different motors

(a) Current control on a PMSM with low
rated power

(b) Current control on a PMSM with high
rated power
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Summary

▶ Application of RL on technical systems comes with many challenges, e.g.,
▶ Safety limits,
▶ Real-time / computational constraints,
▶ Varying and/or partially unknown environments.

▶ Real-world implementations often require more than bare RL algorithms, e.g.,
▶ Integration of available a priori expert knowledge,
▶ Combination with model-based control engineering tools.

▶ Ideal integration of data-driven RL solutions together with expert-based control
engineering parts is subject to many open research question.
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