Lecture 11: Eligibility Traces

Oliver Wallscheid
Recall \(n \)-step bootstrapping updates:

\[
\begin{align*}
g_{k:k+n} &= r_{k+1} + \gamma r_{k+2} + \cdots + \gamma^{n-1} r_{k+n} + \gamma^n \hat{v}_{k+n-1}(x_{k+n}), \\
g_{k:k+n} &= r_{k+1} + \gamma r_{k+2} + \cdots + \gamma^{n-1} r_{k+n} + \gamma^n \hat{q}_{k+n-1}(x_{k+n}, u_{k+n}).
\end{align*}
\]

Motivation: retrieve bootstrapped estimates between one-step updates and Monte Carlo.

- Use \(n \) as degree of freedom to find the learning optimum.
- However, there are two significant drawbacks of \(n \)-step bootstrapping:
 - Delay: we are looking \(n \)-steps into the future and, therefore, have to wait \(n \)-steps before we can perform the update.
 - Memory: we have to store \(n \) transitions until we can process them.

Goal of today's lecture

- Find an algorithm with the same flexibility as \(n \)-step bootstrapping.
- Avoid the \(n \)-step disadvantages (delay, memory demand).
Table of Contents

1. λ-Returns
2. TD(λ)
3. Online λ-Return Updates
4. Sarsa(λ)
General Averaging of n-Step Returns

- Averaging different n-step returns is possible without introducing a bias (if sum of weights is one).
- Example on the left:

$$g = \frac{1}{3}g_{k:k+1} + \frac{2}{3}g_{k:k+3}$$

- Horizontal line in backup diagram indicates the averaging.
- Enables additional degree of freedom to reduce prediction error.
- Such updates are called **compound updates**.

Fig. 11.1: Exemplary averaging of n-step returns
λ-Return (1)

Fig. 11.2: Backup diagram for λ-returns

- **λ-return**: is a compound update with exponentially decaying weights:

\[g^\lambda_k = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{(n-1)} g_{k:k+n} \cdot \]

(11.1)

- Parameter is \(\lambda \in \{ \mathbb{R} | 0 \leq \lambda \leq 1 \} \).
- Geometric series of weights is one:

\[(1 - \lambda) \sum_{n=1}^{\infty} \lambda^{(n-1)} = 1 \]
Rewrite λ-return for episodic tasks with termination at $k = T$:

$$g_k^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-k-1} \lambda^{(n-1)} g_{k+n} + \lambda^{T-k-1} g_k. \quad (11.2)$$

Return g_k after termination is weighted with residual weight λ^{T-k-1}.

Above, (11.2) includes two special cases:
- If $\lambda = 0$: becomes TD(0) update.
- If $\lambda = 1$: becomes MC update.

Fig. 11.3: Weighting overview in λ-return series (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
Offline λ-Return Semi-Gradient Algorithm

- Applying semi-gradient updates with fct. approximation we receive:

$$w_{k+1} = w_k + \alpha \left[g_k^\lambda - \hat{v}(x_k, w_k) \right] \nabla_w \hat{v}(x_k, w_k). \quad (11.3)$$

- Offline refers to that w is not changed until the episode's end.

Fig. 11.4: Prediction accuracy comparison based on 19-state random walk example from Fig. 6.3 (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
Truncated λ-Returns

- Using λ-returns as in (11.1) is not feasible for continuing tasks.
- One would have to wait infinitely long to receive the trajectory.
- Intuitive approximation: truncate λ-return after h steps

$$g_{k:h}^\lambda = (1 - \lambda) \sum_{n=1}^{h-k-1} \lambda^{n-1} g_{k:k+n} + \lambda^{h-k-1} g_{k:h}.$$ \hspace{1cm} (11.4)

- Horizon h divides continuing tasks in rolling episodes.
- The truncated λ-return (11.4) can be used analogously to n-step returns in semi-gradient TD updates (cf. Algo. 9.3).
Both, n-step and λ-return updates, are based on a forward view.

We have to wait for future states and rewards to arrive before we are able to perform an update.

Currently, λ-returns are only an alternative to n-step updates with different weighting without a particular advantage.

Fig. 11.5: The forward view: an update of the current state value is evaluated by future transitions (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
Table of Contents

1. λ-Returns
2. TD(λ)
3. Online λ-Return Updates
4. Sarsa(λ)
Backward View of TD(λ)

General idea:

- Use λ-weighted returns looking into the past.
- Implement this in a recursive fashion to save memory.
- Therefore, an eligibility trace z_k denoting the importance of past events to the current state update is introduced.

$$\delta_t = R_{t+1} + \hat{v}(S_{t+1}, \omega_t) - \hat{v}(S_t, \omega_t)$$ (12.6)

In TD(λ), the weight vector is updated on each step proportional to the scalar TD error and the vector eligibility trace:

$$\omega_{t+1} = \omega_t + \gamma \delta_t z_t.$$ (12.7)

Fig. 11.6: The backward view: an update of the current state value is evaluated based on a trace of past transitions (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
Why is the exponential weighting particular suitable for TD(λ)?
▶ Because we can easily implement this in a recursive fashion.

Exponential smoothing filter

Let x_k be an arbitrary signal sampled at equally distributed time steps k. Then, the filtered signal y_k with an exponential window function of past observations is

$$y_k = \beta x_k + (1 - \beta)y_{k-1}, \quad k > 0 \quad \text{and} \quad y_0 = x_0$$

(11.5)

with β being the smoothing factor.

▶ Above is a simple recursive exponential smoothing filter which converges for $k >> 1$.
Eligibility Trace (2)

With TD and function approximation

- the eligibility trace \(z_k \in \mathbb{R}^\zeta \) is a vector with same dimensions as \(w \):
 \[
 z_0 = 0,
 z_k = \gamma \lambda z_{k-1} + \nabla_w \hat{v}(x_k, w_k).
 \]
 \[\tag{11.6}\]

- It tracks which components of \(w \) have contributed to recent state valuations. Here, \(\lambda \) is also called the trace-decay parameter.

Further remarks:

- \(z_k \) can be interpreted a short-term memory while \(w_k \) is the long-term memory within the learning process of \(\hat{v} \).
- Comparing (11.6) with the filter (11.5) it becomes obvious that \(z \) is not an idealized exp. filtered form of \(\nabla_w \hat{v} \).
- Consider case \(k \to \infty \) and \(\nabla_w \hat{v}(x_k, w_k) = \nabla_w \hat{v} = \text{const.} \), then \(z \) is only a bias-free trace of \(\nabla_w \hat{v} \) in the TD sense if \(\lambda = 1 \):
 \[
 z = \frac{\nabla_w \hat{v}}{1 - \gamma \lambda}.
 \]
Consider linear function approximation with a single state being the feature vector
\[\hat{v}(x_k, w) = x_k w \rightarrow \nabla_w \hat{v}(x_k, w) = x_k. \]

For illustration purpose we assume that \(w \) is constant.

Below is an example for the eligibility trace with \(\lambda = 0.9, \gamma = 1 \).

Fig. 11.7: Illustration of gradient \(\nabla_w \hat{v} \) and corresponding trace \(z \) based on (11.6) for single state example with linear function approximation.
Together with (11.6) the semi-gradient TD(\(\lambda\)) update is:

\[\delta_k = r_{k+1} + \gamma \hat{v}(x_{k+1}, w_k) - \hat{v}(x_k, w_k), \]

\[w_{k+1} = w_k + \alpha \delta_k z_k. \]

\[(11.7)\]

input: a policy \(\pi\) to be evaluated
input: a differentiable function \(\hat{v} : \mathbb{R}^\kappa \times \mathbb{R}^\zeta \to \mathbb{R}\) with \(\hat{v}(x_T, \cdot) = 0\)
parameter: step size \(\alpha \in \{\mathbb{R}\mid 0 < \alpha < 1\}\), decay rate \(\lambda \in \{\mathbb{R}\mid 0 \leq \lambda \leq 1\}\)
init: value-function weights \(w \in \mathbb{R}^\zeta\) arbitrarily
for \(j = 1, 2, \ldots \) **episodes** **do**
 initialize \(x_0\) and set \(z = 0\);
 for \(k = 0, 1, 2 \ldots \) **time steps** **do**
 \(u_k \leftarrow \) apply action from \(\pi(x_k)\);
 observe \(x_{k+1}\) and \(r_{k+1}\);
 \(z \leftarrow \gamma \lambda z + \nabla_w \hat{v}(x_k, w)\);
 \(\delta \leftarrow r_{k+1} + \gamma \hat{v}(x_{k+1}, w) - \hat{v}(x_k, w)\);
 \(w \leftarrow w + \alpha \delta z\);
 exit loop if \(x_{k+1}\) is terminal;

Algo. 11.1: Semi-gradient TD(\(\lambda\)) (output: parameter vector \(w\) for \(\hat{v}_\pi\))
Exemplary Comparison

- TD(λ) is not an exact representation of offline λ-returns (see below).
- For $\lambda = 0$: matches exactly semi-gradient one-step TD (’TD(0)’).
- For $\lambda = 1$: mimics long-term Monte Carlo updates.

Fig. 11.8: Prediction accuracy comparison based on 19-state random walk example from Fig. 6.3 (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
Table of Contents

1 λ-Returns
2 TD(λ)
3 Online λ-Return Updates
4 Sarsa(λ)
Truncated λ-Returns for Online Updates

- Recall the truncated λ-return after h steps

\[
g_{k:h}^\lambda = (1 - \lambda) \sum_{n=1}^{h-k-1} \lambda^{n-1} g_{k:k+n} + \lambda^{h-k-1} g_{k:h}.
\]

- If $h < T$ then we can perform online updates since w is changed within an episode.

- Implementation is very similar to n-step bootstrapping, also forward view (e.g., still delayed with increased memory demand):

\[
\delta'_k = r_{k+1} + \gamma \hat{v}(x_{k+1}, w_k) - \hat{v}(x_k, w_k),
\]

\[
g_{k:k+n}^\lambda = \hat{v}(x_k, w_{k-1}) + \sum_{i=k}^{k+n-1} (\gamma \lambda)^{i-k} \delta'_i,
\]

\[
w_{k+n} = w_{k+n-1} + \alpha \left[g_{k:k+n}^\lambda - \hat{v}(x_k, w_{k+n-1}) \right] \nabla_w \hat{v}(x_k, w_{k+n-1}).
\]
Increase Approximation Quality by Redoing Updates (1)

General trade-off regarding the truncated λ-returns (forward view):

- If n is small: delay and memory demand are low.
- If n is high: approximation of offline λ-returns is more accurate.

Idea to solve this compromise: redoing updates.

- If new data is available, we go back and redo all previous updates.
- Reuse data samples $\mathcal{D}_k \sim \langle x_k, r_k, x_{k+1} \rangle$.
- Update parameter vector w_k^h at k-th time step up to horizon h.

Fig. 11.9: Simplified flowchart for redoing updates at time step k and horizon h
Increase Approximation Quality by Redoing Updates (2)

The update sequence from example Fig. 11.9 using semi-gradients:

\[h = 1 : \quad w_1^1 = w_0^1 + \alpha \left[g_{0:1}^\lambda - \hat{v}(x_0, w_0^1) \right] \nabla_w \hat{v}(x_0, w_0^1) \]

\[h = 2 : \quad w_1^2 = w_0^2 + \alpha \left[g_{0:2}^\lambda - \hat{v}(x_0, w_0^2) \right] \nabla_w \hat{v}(x_0, w_0^2) \]
\[w_2^2 = w_1^2 + \alpha \left[g_{1:2}^\lambda - \hat{v}(x_1, w_1^2) \right] \nabla_w \hat{v}(x_1, w_1^2) \]

\[h = 3 : \quad w_1^3 = w_0^3 + \alpha \left[g_{0:3}^\lambda - \hat{v}(x_0, w_0^3) \right] \nabla_w \hat{v}(x_0, w_0^3) \]
\[w_2^3 = w_1^3 + \alpha \left[g_{1:3}^\lambda - \hat{v}(x_1, w_1^3) \right] \nabla_w \hat{v}(x_1, w_1^3) \]
\[w_3^3 = w_2^3 + \alpha \left[g_{2:3}^\lambda - \hat{v}(x_2, w_2^3) \right] \nabla_w \hat{v}(x_2, w_2^3) \]
Generalization of the example:

Online \(\lambda \)-return

Having samples \(\mathcal{D}_k \sim \langle x_k, r_k, x_{k+1} \rangle \) up to horizon \(h \) available, the general online \(\lambda \)-return update is

\[
\mathbf{w}_{k+1}^h = \mathbf{w}_k^h + \alpha \left[g_{k:h}^{\lambda} - \hat{v}(x_k, \mathbf{w}_k^h) \right] \nabla \hat{v}(x_k, \mathbf{w}_k^h), \quad 0 \leq k \leq h \leq T
\]

(11.8)

with the final parameter vector \(\mathbf{w}_k = \mathbf{w}_k^T \) at the given time step.

- Online approach: a new \(\mathbf{w}_k \) is calculated at each step using only information available at step \(k \).
- Obviously, the approach is very computationally demanding.
 - Computations increase with every time step.
 - Is likely to become infeasible for long episodes.
Comparison Online Vs. Offline λ-Returns

Through the repeated updates, the online λ-return algorithm can even increase the prediction quality compared to its offline variant.

![Comparison Graph](image)

Fig. 11.10: Prediction accuracy comparison based on 19-state random walk example from Fig. 6.3 (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
True Online TD(\(\lambda\)) for Linear Approximation

If linear function approximation \(\hat{v} = \tilde{x}^T w\) is applied the

- online \(\lambda\)-return updates (11.8) and
- the elegant implementation using eligibility traces (11.6)

can be nicely combined. By doing so we receive

- backward-viewing linear algorithm which
- is denoted as 'true' online TD(\(\lambda\)) because it is not an approximation
 of the offline \(\lambda\)-returns as the regular TD(\(\lambda\)) from Algo. 11.1.

The true online TD(\(\lambda\)) update equations are\(^1\):

\[
\begin{align*}
 z_k &= \gamma \lambda z_{k-1} + (1 - \alpha \gamma \lambda \tilde{x}_k^T z_{k-1}) \tilde{x}_k, \\
 \delta_k &= r_{k+1} + \gamma \tilde{x}_{k+1}^T w_k - \tilde{x}_k^T w_k, \\
 w_{k+1} &= w_k + \alpha \delta_k z_k + \alpha \left(\tilde{x}_k^T w_k - \tilde{x}_k^T w_{k-1} \right) (z_k - \tilde{x}_k).
\end{align*}
\]

Algorithmic Implementation: True Online TD(\(\lambda\))

\begin{itemize}
\item \textbf{input:} a policy \(\pi\) to be evaluated
\item \textbf{input:} a feature representation \(\tilde{x}\) with \(\tilde{x}_T = 0\) (i.e., \(\hat{v}(\tilde{x}_T, \cdot) = 0\))
\item \textbf{parameter:} step size \(\alpha \in \{\mathbb{R} | 0 < \alpha < 1\}\), decay rate \(\lambda \in \{\mathbb{R} | 0 \leq \lambda \leq 1\}\)
\item \textbf{init:} value-function weights \(\mathbf{w} \in \mathbb{R}^{\zeta}\) arbitrarily
\end{itemize}

\begin{algorithm}
\For {\(j = 1, 2, \ldots\) episodes} {
\For {\(k = 0, 1, 2 \ldots\) time steps} {
\begin{align*}
\mathbf{u}_k &\leftarrow \text{apply action from } \pi(\mathbf{x}_k); \\
\mathbf{x}_{k+1} &\text{ and } r_{k+1}; \\
\hat{v} &\leftarrow \tilde{x}_k^T \mathbf{w}; \\
\hat{v}' &\leftarrow \tilde{x}_{k+1}^T \mathbf{w}; \\
\delta &\leftarrow r_{k+1} + \gamma \hat{v}' - \hat{v}; \\
z &\leftarrow \gamma \lambda z + (1 - \alpha \gamma \lambda \tilde{x}_k^T z) \tilde{x}_k; \\
\mathbf{w} &\leftarrow \mathbf{w} + \alpha (\delta + \hat{v} - \hat{v}_{old}) z - \alpha (\hat{v} - \hat{v}_{old}) \tilde{x}_k; \\
\hat{v}_{old} &\leftarrow \hat{v}' ;
\end{align*}
exit loop if \(\mathbf{x}_{k+1}\) is terminal;
}
}
\end{algorithm}

\textbf{Algo. 11.2:} True Online TD(\(\lambda\)) (output: parameter vector \(\mathbf{w}\) for \(\hat{v}_\pi\))
Transfer for Action Values

First, transfer truncated λ-returns to action values (forward view):

$$g_{k:h}^\lambda = (1 - \lambda) \sum_{n=1}^{h-k-1} \lambda^{(n-1)} g_{k:k+n} + \lambda^{h-k-1} g_{k:h},$$

$$g_{k:k+n} = r_{k+1} + \gamma r_{k+2} + \cdots + \gamma^{n-1} r_{k+n} + \gamma^n \hat{q}(x_{k+n}, u_{k+n}, w_{k+n-1}).$$

(11.10)

From that, the forward view offline λ-return update for \hat{q} is:

$$w_{k+1} = w_k + \alpha \left[g_k^\lambda - \hat{q}(x_k, u_k, w_k) \right] \nabla_w \hat{q}(x_k, u_k, w_k).$$

(11.11)

The backward view approximation known as Sarsa(λ) is then:

$$\delta_k = r_{k+1} + \gamma \hat{q}(x_{k+1}, u_{k+1}, w_k) - \hat{q}(x_k, u_k, w_k),$$

$$z_k = \gamma \lambda z_{k-1} + \nabla_w \hat{q}(x_k, u_k, w_k), \quad z_0 = 0,$$

$$w_{k+1} = w_k + \alpha \delta_k z_k.$$

(11.12)
Algorithmic Implementation: Semi-Gradient Sarsa(λ)

input: a differentiable function $\hat{q} : \mathbb{R}^\kappa \times \mathbb{R}^\zeta \rightarrow \mathbb{R}$
input: a policy π (only if estimating q_π)
parameter: $\alpha \in \{\mathbb{R}|0 < \alpha < 1\}$, $\varepsilon \in \{\mathbb{R}|0 < \varepsilon << 1\}$, $\lambda \in \{\mathbb{R}|0 \leq \lambda \leq 1\}$
init: parameter vector $w \in \mathbb{R}^\zeta$ arbitrarily

for $j = 1, 2, \ldots$ episodes do
 initialize x_0 and set $z = 0$;
 $u_0 \leftarrow$ choose action from $\pi(x_0)$ or ε-greedy on $\hat{q}(x_0, \cdot, w)$;
 for $k = 0, 1, 2 \ldots$ time steps do
 apply action u_k, observe x_{k+1} and r_{k+1};
 if x_{k+1} is terminal then $\delta \leftarrow r_{k+1} - \hat{q}(x_k, u_k, w)$;
 else
 $u_{k+1} \leftarrow \pi(x_{k+1})$ or ε-greedy on $\hat{q}(x_{k+1}, \cdot, w)$;
 $\delta \leftarrow r_{k+1} + \gamma \hat{q}(x_{k+1}, u_{k+1}, w) - \hat{q}(x_k, u_k, w)$;
 $z \leftarrow \gamma \lambda z + \nabla_w \hat{q}(x_k, u_k, w)$;
 $w \leftarrow w + \alpha \delta z$;
 exit loop if x_{k+1} is terminal;

Algo. 11.3: Semi-gradient Sarsa(λ) (output: parameter vector w for \hat{q}_π or \hat{q}^*)
Sarsa Learning Comparison in Gridworld Example

- λ can be interpreted as the discounting factor acting on the eligibility trace (see right-most panel below).
- Intuitive interpretation: more recent transitions are more certain/relevant for the current update step.

\[
\begin{align*}
S & \quad T \\
St & \quad At \\
At+1 & \quad AT1 \\
St+1 & \quad Rt+1 \\
\ldots & \quad \ldots \\
St+2 & \quad \ldots \\
\end{align*}
\]

Fig. 11.11: Sarsa variants after an arbitrary episode within a gridworld environment – arrows indicate action-value change starting from initially zero estimates (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
Sarsa(\(\lambda\)) vs \(n\)-Step Sarsa on Mountain Car Task

- Sarsa(\(\lambda\)) is able to learn significantly faster than any \(n\)-step variant.
- However, only intermediate performance is shown after 50 episodes.

Fig. 11.12: Sarsa-based control performance comparison based on previous example from Fig. 10.4. Both algorithms use linear function approximation and tile coding (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
True Online Sarsa(λ)

- Likewise TD(λ) for state values, Sarsa(λ) is not an exact backward view implementation of the offline λ-return algorithm (11.11).
- To improve the Sarsa(λ) performance we again have two options:
 - Redoing updates: Online Sarsa(λ) (e.g., with non-linear function approximation, direct transfer from (11.8)),
 - or re-use the true online implementation with linear approximators for action values.

- The true online Sarsa(λ) updates are analog to TD(λ), but the features additionally contain action information $\tilde{x} = f(x, u)$:

$$
\begin{align*}
 z_k &= \gamma \lambda z_{k-1} + (1 - \alpha \gamma \lambda \tilde{x}_k^T z_{k-1}) \tilde{x}_k, \\
 \delta_k &= r_{k+1} + \gamma \tilde{x}_{k+1}^T w_k - \tilde{x}_k^T w_k, \\
 w_{k+1} &= w_k + \alpha \delta_k z_k + \alpha \left(\tilde{x}_k^T w_k - \tilde{x}_k^T w_{k-1} \right) (z_k - \tilde{x}_k).
\end{align*}
$$

(11.13)
Algorithmic Implementation: True Online Sarsa(λ)

input: a policy π to be evaluated
input: a feature representation \tilde{x} with $\tilde{x}_T = 0$ (i.e., $\hat{q}(\tilde{x}_T, \cdot, \cdot) = 0$)
parameter: $\alpha \in \mathbb{R}|0 < \alpha < 1\}$, $\varepsilon \in \{\mathbb{R}|0 < \varepsilon << 1\}$, $\lambda \in \{\mathbb{R}|0 \leq \lambda \leq 1\}$
init: value-function weights $w \in \mathbb{R}^\zeta$ arbitrarily

for $j = 1, 2, \ldots$ episodes **do**

- initialize x_0 and set $u_0 \leftarrow$ from $\pi(x_0)$ or ε-greedy on $\hat{q}(x_0, \cdot, w)$;
- set $z = 0$ and $\hat{q}_{old} = 0$;

for $k = 0, 1, 2 \ldots$ time steps **do**

- apply action u_k, observe x_{k+1} and r_{k+1};
- $u_{k+1} \leftarrow$ choose action from $\pi(x_{k+1})$ or ε-greedy on $\hat{q}(x_{k+1}, \cdot, w)$;
- $\hat{q} \leftarrow \tilde{x}_k^T w$ and $\hat{q}' \leftarrow \tilde{x}_{k+1}^T w$;
- $\delta \leftarrow r_{k+1} + \gamma\hat{q}' - \hat{q}$;
- $z \leftarrow \gamma \lambda z + (1 - \alpha \gamma \lambda \tilde{x}_k^T z) \tilde{x}_k$;
- $w \leftarrow w + \alpha(\delta + \hat{q} - \hat{q}_{old}) z - \alpha(\hat{q} - \hat{q}_{old}) \tilde{x}_k$;
- $\hat{q}_{old} \leftarrow \hat{q}'$;
- exit loop if x_{k+1} is terminal;

Algorithm 11.4: True Online Sarsa(λ) (output: parameter vector w for \hat{q}_π or \hat{q}^*)
Multiple n-step return estimates can be weighted to form a compound update (adds more degrees of freedom).

λ-returns use this idea with exponentially-decaying weights.

However, like n-step bootstrapping also λ-returns are forward-viewing and, therefore suffer from increased memory demand and delay times.

Using eligibility traces we introduce backward-facing algorithms:

The trace is acting as a short-term memory.

How important was a parameter for the current value update?

$\text{TD}(\lambda)$ is using the traces for state-value prediction.

Applicable with general nonlinear function approximation.

However, not an exact representation of λ-returns.

Only if linear function approximation is used, true online $\text{TD}(\lambda)$ allows identically backward-facing updates as λ-returns.

Transfer to action values by Sarsa is straightforward.
The End for Today

Thanks for your attention and have a nice week!