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Time-efficient analysis of nonlinear dynamic behavior
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Many nonlinear mechanical oscillators show excitation-dependent behavior. In this paper, a new measurement approach is
presented to analyze such structures. The main advantage of the presented method is the high efficiency, since measurement
duration and loads to the structure are significantly reduced.
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1 Introduction

Vibration testing is a widely-spread tool that is thoroughly known and successfully used in research and industry. It provides
methods to gain knowledge of the dynamic behavior of technical structures; in general, the dynamic input-output-behavior of
structures is described utilizing frequency response functions (FRFs). The common approach is to excite the structure with a
force vector covering the desired bandwidth (signals with harmonic content or impulse type) and record the structure response
to the forced vibration. From this data, the FRF is calculated [1, 8]. Most state-of-the-art measurement techniques are based
on linear or pseudo-linear assumptions. In many cases, this leads to usable results, although it is known that every real world
system contains more or less nonlinear elements in its dynamic behavior (e.g. friction).

Many mechanical oscillators exhibit excitation-amplitude dependency in their dynamic behavior. This type of nonlinearity
usually appears in a stiffening or weakening behavior of the structure that is dependent on the excitation amplitude (force
or displacement), typically combined with amplitude-dependent damping characteristics. In general, these systems behave
linear as long as they are excited by small force vectors. On increasing force amplitude of the excitation signal, the amplitude
dependency dominates the dynamic behavior, which leads to a shift of the resonance peak(s) to higher or lower frequencies
compared to the ’linear’ ones at low input levels. The resulting shift of the resonance peaks can be described by a peak bending
curve (PBC), sometimes also referred to as backbone curve [5,6].

To get an entire description of such behavior, it is necessary to analyze the frequency behavior in dependency of the excita-
tion amplitude level. As a consequence, a change from the classical input-independent concept of single FRFs to characteristic
diagrams is worthwhile; ignoring the amplitude dependency would lead to inaccurate descriptions of the dynamic behavior [6].
In order to obtain these characteristic diagrams, several frequency response measurements at different excitation amplitude
levels have to be carried out. As sweep or stepped sine techniques would be used for that, this method is very time consuming.
Besides that, another drawback of this approach is that the structure under tests needs to be exposed to high loads.

2 Gathering and processing the dynamic behavior

In this paper, a new approach is presented to determine the characteristic diagram of the above structures exhibiting excitation-
amplitude dependent behavior. The approach is based on the fact that a nonlinear system NL can always be split into a linear
base system L, superimposed by nonlinear distortions NL’ as shown in figure 1, see [3,4].
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Fig. 1: Segmentation of nonlinear system into linear base system and nonlinear Fig. 2: Basic principle of the BLA

distortions

Settling to this idea and assuming that the system only has weak nonlinear behavior, a linear description can be found that
minimizes the least square errors between the true output of the nonlinear system and the output of the linear model [4], see
figure 2. This approximation is called the best linear approximation (BLA) of the nonlinear system [3]; it is dependent on the
input signal u(t). The assumption of weak nonlinear system behavior means no limitation concerning the presented approach,
since only low input level measurements are required, see later.
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294 Section 5: Nonlinear oscillations
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Fig. 3: Measured BLAs at low excitation levels Fig. 4: Full characteristic diagram of dynamic system behavior

As described above, amplitude-dependent nonlinear systems show (pseudo-)linear behavior on low input amplitudes, and
the nonlinear behavior shows up as deviations in the frequency of the resonance peaks. The locus of the resonance peaks at
different excitation levels is described by the peak bending curve. The key idea of the proposed method is to measure the basic
linear behavior and to identify the peak bending curve that corresponds to the nonlinear deviation of the system from its basic
linear behavior. This information is merged to derive an entire description of the dynamics of the system.

The basic linear behavior of the system is measured in terms of some BLAs at different low excitation levels as shown in
figure 3 (blue lines); the BLAs correspond to the FRFs in linear cases. Next, the resonance peaks (red stars) of these BLAs are
identified. Based on a modal approach, they can be transferred into system poles, allowing to identify the peak bending curve
in the Gaussian Plane. The system poles describe the resonance frequency and damping which are the quantities that lead to
peak bending, making them well suited to describe the change in system behavior. Another advantage in using poles instead
of resonance points is that the root locus normally has simple geometric shape, so it is easy to identify.

After the poles are determined, they are re-transfered into resonance points. Using the identified resonance peaks and the
knowledge of the underlying linear base system, the full characteristic diagram can be extrapolated. For comparison, the
actual behavior at the higher excitation amplitudes can also be simulated, since artificial data are used. The results are shown
in figure 4: the black dotted lines are the best linear approximations at different excitation amplitudes, and the identified peak
bending curve is shown in red. The green line shows the actual peak bending curve as it was simulated for the higher level
excitations.

The example presented in the plots uses 9 BLAs for the algorithm and determines 11 additional amplitude levels. The
identified resonance peaks were compared to the actual ones; the maximum relative error is 0.78%. The presented method
requires approx. 3 minutes including all processing times. A stepped sine measurement was chosen as state-of-the-art method
to benchmark the presented approach; with the same options (bandwidth, number of experiments) it required about 80 minutes,
which corresponds to time savings of more than 90%.

3 Conclusions

The presented method utilizes the concept of the best linear approximation to construct a new method for measuring the
dynamic behavior of nonlinear systems with input-amplitude dependency. The method is demonstrated on artificial test data
and shows good performance. It significantly reduces measurement time at comparable accuracy, considering state-of-the-art
methods. In our future work, the method will be tested on real world structures.
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