
2207

Safety and Reliability of Complex Engineered Systems – Podofillini et al. (Eds)
© 2015 Taylor & Francis Group, London, ISBN 978-1-138-02879-1

Integrated model for dynamics and reliability of intelligent  
mechatronic systems

T. Kaul, T. Meyer & W. Sextro
Mechatronics and Dynamics, Faculty of Mechanical Engineering, University of Paderborn, Paderborn, Germany

ABSTRACT:  Intelligent mechatronic systems are able to autonomously adapt system behavior to cur-
rent environmental conditions and to system states. To allow for such reactions, complex sensor and 
actuator systems as well as sophisticated information processing are required, making these systems 
increasingly complex. However, with the risk of increased system complexity also comes the chance to 
adapt system behavior based on current reliability and in turn to increase reliability. The adaptation is 
based on switching selecting an appropriate working point at runtime. Multiple suitable working points 
can be found using multi-objective optimization techniques, which require an accurate system model 
including system reliability. At present, modeling of system reliability is a laborious manual task per-
formed by reliability modelling experts. Despite actual system reliability being highly dependent on system 
dynamics, pre-existing system dynamics models and the resulting reliability model are at best loosely cou-
pled. To allow for closer interaction among dynamics and reliability model and to ensure these are always 
synchronized, advanced modeling techniques are required. Therefore, an integrated model is introduced 
that reduces user input to a minimum and that integrates system dynamics and system reliability.

tural changes to the system itself  or changes in 
parameters. During multi-objective optimization, 
user-selected parameters are changed and system 
performance and reliability is evaluated by the 
optimization algorithm to find suitable working 
points.

The prevailing load on a component is crucial 
for its degradation and therefore for its lifetime. 
In turn, system reliability is highly influenced 
by loads on individual system components. To 
compute the load on components, the model 
of  system dynamics is simulated and evaluated. 
A topological modeling approach was chosen for 
the model of  system dynamics and component 
degradation models are added to compute com-
ponent lifetime for current loads. By integrating 
component degradation models into the model of 
system dynamics, the complete system model is 
formed. The system model is automatically trans-
formed into Bayesian networks as model of  sys-
tem reliability.

Model-based multi-objective optimization is 
a suitable approach to determine working points 
for mechatronic systems in case of conflicting 
objectives. In this case, the required objective func-
tions contain a model of system behavior which 
is simulated and evaluated during each func-
tion call for a parameter set given by the multi-
objective optimization algorithm. In order to 
allow for reliability-based behavior adaptation, 

1  INTRODUCTION

The development of  intelligent mechatronic sys-
tems leads to systems with advanced functional-
ity at the cost of  increasing complexity. To cope 
with the increased failure risk due to complexity, 
reliability is a main objective during development, 
necessitating comprehensive reliability models. 
However, among the capabilities of  intelligent 
systems is the adaptation of  system behavior at 
runtime. This can be used to increase reliability, 
leading to so-called reliability adaptive systems. 
These systems react on their own reliability. If  
reliability is lower than specified, an inherently 
more reliable operating point is selected while 
decreasing system performance. However, pow-
erful software tools are required to facilitate 
the development process for reliable intelligent 
systems.

In this paper, a novel methodology for auto-
mated model based transformation of a dynamic 
model into a system reliability model is intro-
duced. These two models are then used to quan-
tify system performance and system reliability and 
are used as objectives in multi-objective optimi-
zation. Bayesian Networks are used to represent 
system reliability. An automated transformation 
algorithm allows autonomous generation of a 
model of  system reliability with respect to changes 
in the dynamic model. These can either be struc-
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a reliability-related objective function, which is 
based on the reliability-model, must be included. 
The reliability model strongly depends on dynamic 
system behavior, which is influenced by the cur-
rently evaluated optimization parameter. Thus, an 
update of the reliability model during each objec-
tive function call is necessary.

The remainder of this paper is organized as 
follows: Sec.  2  introduces the current state of 
research regarding integrated modeling. Secs. 3 
and 4.2 introduce the selected application example. 
The integrated model is detailed in Sec.  4 before 
the transformation algorithm is introduced in 
Sec. 5. The step to system reliability is fulfilled in 
Sec. 6 to form an objective function in Sec. 7. The 
paper ends with a short conclusion in Sec. 8.

2  Modeling System Dynamics 
 and Reliability

Intelligent mechatronic systems can autono-
mously adapt system behavior to current environ-
mental conditions and system states, which leads 
constantly changing system behavior with vary-
ing dynamic loads. Combining this autonomous 
response to possibly unknown environmental con-
ditions and the high complexity, it becomes clear 
that advanced modelling methods based on multi-
domain description languages, e.g. MODELICA, 
VHDL-AMS, LARES or Matlab/Simulink, are 
required.

In Schallert (2011) the implementation of 
MODELICA-libraries for simulation as well as for 
reliability and safety analysis of aircraft onboard 
electric power systems is introduced. Reliability 
and safety analysis is done by evaluating automati-
cally Generated Fault Trees (FTA) or Reliability 
Block Diagrams (RBD).

Bestory et al. (2007) describe electronic circuit 
behavior and degradation models in VHDL-AMS 
and perform statistical reliability analysis using 
Monte-Carlo-Simulations with respect to compo-
nent degradation over lifetime.

The two previously introduced methods are 
restricted to electrical systems and therefore not 
suitable for integrated modeling of mechatronic 
systems as desired in this paper.

Walter et al. (2009) introduce the LAnguage 
for REconfigurable Systems (LARES) to model 
dynamic behavior and reliability of fault-tolerant 
systems. While originally developed to model 
computer systems, it can also be used to evaluate 
reliability of self-optimizing mechatronic systems 
(Meyer et al. (2013)). A major drawback is that 
dependencies between current system behavior and 
failure rates need to be defined externally and are 
not computed automatically.

The three approaches do not provide an auto-
matic synchronization between dynamics and reli-
ability to model the influence of dynamic loads 
on component lifetime. This aspect as well as the 
restriction on electronic systems limit the use of 
these methods in multi-objective optimization 
problems of mechatronic systems in the design 
phase.

3  Application Example

A single plate dry clutch system was chosen as 
application example since it is a well-known sys-
tem of which one component is wearing due to 
friction, and where the interdepency of usage, i.e. 
actuation strategy, and wear directly affects system 
lifetime. The basic outline of the clutch system is 
shown in Figure 1.

It consists of two friction plates with coefficient 
of friction µ , of  which the input plate is connected 
to the engine while the output plate is connected 
to the driven system, e.g. a gearbox. In the model 
setup shown in Figure  1 and used for experi-
ments, engine and driven system are represented 
by brushed DC motors. They are connected to the 
clutch plate drive shafts by toothed belts, which 
are not shown in Figure 1. To engage the clutch, 
both plates are pressed against each other by the 
force FN , thus transmitting torque from the driving 
motor to the input plate, to the output plate and in 
turn applying this torque to the driven system.

The dominating failure mode is the inability 
to transmit torque due to worn out clutch plates. 
Other failure modes, e.g. actuator or sensor defects, 
broken mechanical parts or failures in control 
units, are by far less probable.

Those interested in further details are asked 
to refer to Meyer et al. (2013), Meyer and Sextro 
(2014).

Figure 1.  Set up of clutch system.
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4  Integrated Model

For combined evaluation of  reliability and per-
formance of  the system, the component lifetime 
models are integrated with a model of  system 
dynamics, thus forming the system model. In 
Figure 2, the structure of  the integrated model is 
shown. The proposed system model is intended 
to allow without limitations for evaluation of 
dynamic system behavior and controller synthesis 
as well as evaluation of  system component reliabil-
ity R tC ( ). The transformation algorithm described 
in Sec.  5 then combines system component reli-
abilities R tC ( ) and system model structure iden-
tified by the transformation algorithm to allow 
evaluation of  system reliability R tS ( ). Hence, 
system reliability R tS ( ) can be used as reliability 
oriented objective function in a multi-objective 
optimization problem, where it is combined with 
additional objective functions to take system 
dynamics into account.

4.1  Dynamic model

The dynamic model serves two purposes. Firstly, it 
is used to assess system dynamics and performance 
and to design controllers. This can be combined 
with multiobjective optimization where the optimi-
zation algorithm varies e.g. controller parameters. 
Secondly, and also the main purpose within the 
scope of this paper, it is used to determine dynamic 
loads, e.g. forces transmitted through a joint, for 
inclusion in component lifetime models.

The dynamic model uses a topology-oriented 
modeling approach, where dynamic behavior is 
directly mapped to the corresponding system 
component and dynamic loads for each relevant 
system component can be obtained. Topology-ori-
ented modeling contains generalized multidomain 
components, e.g. mechanical, electrical, electronic, 
hydraulic, that can be parametrized to match real 

technical subsystems. Those components are reus-
able and can be used to modularize models accord-
ing to real system structure.

The dynamic model is simulated and evaluated 
for a characteristic maneuver. The characteristic 
maneuver is used as basis of system and controller 
design and needs to represent common usage of 
the system at hand as good as possible, as it is the 
environmental model the system is designed for. If  
using automated multiobjective optimization, the 
system is simulated for the characteristic maneuver 
during each objective function call. By reusing this 
characteristic maneuver to determine component 
reliability, user input is reduced.

4.2  Component lifetime models

The proposed integrated model builds a model 
of system reliability from individual component 
reliability models. Those models contain an esti-
mation of useful lifetime based on the dynamic 
load on the component that is highly influenced 
by current dynamic system behavior and is thus 
crucial for component degradation. Thus for each 
component that is considered in system reliabil-
ity analysis, a lifetime model is required in order 
to compute component lifetime based on current 
system dynamic behavior. Lifetime models are 
annotated to the corresponding component in the 
dynamic model.

Lifetime modeling is exemplarily shown for the 
friction plates of the clutch system. Additionally 
required lifetime models can be deducted from lit-
erature, e.g. for ball-bearings (DIN ISO (2003)), 
resistive displacement sensors (Department of 
Defense (1995)), micro controllers (Department of 
Defense (1995)), and are not shown in detail.

As basis of the model, the assumption from 
Fleischer (1973) that clutch plate wear is propor-
tional to friction energy E f  is used. Friction energy 
is dependent on the currently selected parameters 

Figure 2.  Structure of integrated model.
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p, which determine the behavior of the system. For 
each actuation cycle k , wear ∆wk is:

∆ = ⋅ ∆ ( )w p E pk f f k 	
(1)

with coefficient of wear pf . The maximum bear-
able wear wmax for the number of bearable cycles 
kmax is given by:

w w pmax
k

k

k k

max

= ∆ .
=

( )∑
1 	

(2)

It is assumed that e.g. errors or tolerances in 
manufacturing or materials mainly alter the coef-
ficient of wear pf  included in (1), which is then 
individual for each pair of clutch plates. For this, 
a normally distributed perturbation factor z is 
introduced:

p z p zf f z= ⋅ , ,,0
21∼ N ( )σ

	
(3)

with variance σ z = .0 1. For our test setup, the 
proportionality factor was determined to be 
p mm Jf ,

− −= . ⋅ ⋅0
4 14 37 10  for normal wear behav-

ior and maximum bearable wear w mmmax = 5  
was measured Reliability of the full clutch system 
is then evaluated by taking 100 samples of  z and 
simulating the full system lifetime until maximum 
bearable wear wmax is reached. The number of bear-
able cycles kmax is used to calculate friction plate 
lifetime Tclt . It is assumed that cycle time Tcycle  is 
known and that all clutch cycles are directly per-
formed in sequence:

T Tclt
k

k

cycle k

max

=
=

,∑
1 	

(4)

For each sample of z, an individual lifetime Tclt  
is obtained. All are then fitted to a distribution to 
obtain reliability R tclt ( ) of the friction plates for 
operating time t.

If  this component lifetime model is used as 
part of a multi-objective optimization problem, 
the operating parameters p are used as opti-
mization parameters, denoted as popt , thus giv-
ing R p tclt opt( ), . However, current dynamic system 
behavior strongly depends on the chosen param-
eter set popt  that is varied during optimization.

The lifetime models require parameters given 
by user input (e.g. parameters of friction plates 
lifetime model: pf ,0, wmax, z and σ z

2) and dynamic 
loads on the components that are automatically 
obtained from simulation of system dynamics 
model (dissipated friction energy E pf opt( ), which 
is influenced by optimization parameters popt

). The 

estimation of useful lifetime of a system compo-
nent under current conditions is used to compute 
reliability R tC ( ) for a given component-specific 
distribution, e.g. Weibull distribution for reliability 
of machine elements H t( ) :

H t e t( ) ( )= − ⋅λ β

	 (5)

with scale parameter λ , shape parameter β  and 
operating time t. Respectively, an exponential 
reliability distribution is assumed for electronic 
components with β = 1. The scale parameter λ  of  
the introduced distributions depends on compo-
nent lifetime and is thus automatically computed 
by lifetime models. The Weibull shape parameter 
β  is assumed to be constant for certain types of 
machine elements (Bertsche (2008)) and is set as 
default value for predefined lifetime models. The 
parametrization of reliability distributions of 
standardized system components, e.g. ball-bear-
ings, is well-known and can be taken from litera-
ture (Bertsche (2008)).

4.3  Bayesian networks and system reliability

Now that lifetime of each component is known, 
they need to be combined to compute system 
reliability. The synthesis of a model of system 
reliability is based on two pieces of information 
taken from the system model: the structure of  the 
dynamic model to identify causal dependencies in 
functionality between system components and the 
reliability of system components. These two aspects 
directly refer to the chosen model of system relia-
bility—Bayesian Networks. The automatic trans-
formation will be described in Sec. 5.

Bayesian Networks are Directed Acyclic Graph 
(DAG) models with nodes representing a set of 
stochastic variables ν = , ,...,{ }X X Xn1 2  that are 
endowed with distributions. A directed graph 
model is fully defined for a given DAG and Condi-
tional Probability Distributions (CPDs) for every 
node. Each stochastic variable of { }X X Xn1 2, ,...,  
represents a set of a finite number of possible 
states. A variable can only have one of its states at 
a time. Variables can be endowed with individual 
probability distributions, e.g. Weibull (Zaidi et al. 
(2012)) or Exponential for use as reliability model. 
Bayesian Networks set up for ν  specify a unique 
joint probability distribution P( )ν  given by the 
product of all CPDs:

P P X Pa X
i

n

i i( ) ( | ( ))ν =
=
∏

0 	
(6)

where Xi  represents node i  and Pa Xi( ) is the set 
of its parents. If  the variables { }X X Xn1 2, ,...,  are 
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discrete, they can be represented by a Conditional 
Probability Table (CPT), which lists the probabil-
ity that the child node C  takes on each of its dif-
ferent states for each combination of states of its 
parent nodes P C Pa C( | ( )) (Nielsen and Jensen 
(2009)). The probability table of a root node K  
(nodes without parents) is reduced to an uncondi-
tional probability table P K( ) that includes only a 
priori probabilities.

Bayesian Networks can be seen as causal net-
works to be used for reasoning about relevance and 
causal analysis for propagation of beliefs through-
out the network. Therefore, they can be used to 
model the causal dependencies in functionality in 
a technical system, e.g. is a failure of system com-
ponent A relevant for functionality of a system 
component B?

In a system reliability model, the set of variables 
ν  represent a set of system components of the 
monitored technical system. In a first approach it is 
assumed for all system components to have binary 
states: true tr representing a component in operable 
state and false fa representing a component failure. 
Bobbio et al. (2001) show a multi-state variable 
approach to allow for modeling multiple failure 
modes of a system component. This approach 
takes advantage of compact reliability modeling 
when using Bayesian Networks.

The probability tables P A( ) for a system compo-
nent A and conditional table P B A( | ) for a system 
component B in a Bayesian Network as system 
reliability model as shown in Figure  3 represent 
system component reliability R tA( ) and R tB ( ) as 
well as causal failure propagation represented by 
binary table entries. It is still assumed that both 
components have binary states and B condition-
ally fails when a failure of A occurs. Thus, B even-
tually fails on his own account with 1− R tB ( ) when 
is in operable state.

Considering (6), the joint probability distri-
bution of the Bayesian Network P A B( ),  can be 
computed that could be interpreted as system relia-
bility R tS ( ). The Bayesian Network as set up above 
represents system and component reliability R tC ( ) 
and R tS ( ) only at a particular operating time t.

System reliability R tS ( ) has to be evaluated over 
system lifetime TS , which is radically different from 
simulation time dynamic model and from the dura-
tion of the characteristic maneuver Tcm.

4.4  Simulation

The introduced system model combines two 
aspects of a technical system, dynamics and reli-
ability, that are observed on different time scales. 
Dynamic system behavior typically contains high-
frequency signals, e.g. system response to an exci-
tation, that require a sufficiently small sampling 

step size to observe relevant aspects. To this end, 
the horizon of simulation time of the character-
istic maneuver Tcm, e.g. Tcycle  in Sec. 4.2 is limited 
due to increasing data size and duration of simula-
tion for small sampling step sizes ts dyn, . However, 
system and component reliability R tS ( ) and R tC ( ) 
with operating time of the system t  are sampled 
with greater step size ts rel, .

The lifetime of technical systems typically ranges 
in 106 h in contrast to the the duration of the char-
acteristic maneuver Tcm  in the range of seconds or 
minutes. Thus, dynamic system behavior cannot be 
sampled with greater step size, because t Ts rel cm, > . 
To cope with this challenge, the order of simula-
tion is as follows: first the dynamic model within 
the system model is evaluated using sample step 
size ts dyn,  to obtain dynamic loads for the charac-
teristic maneuver. The dynamic load data is then 
used as input to component lifetime models. Based 
on component lifetime and parameters of the dis-
tribution function, component reliability R tC ( ) is 
computed and t  is sampled with step size ts rel, . The 
component reliabilities R tC ( ) and the causal struc-
ture of the system, the DAG, are used to transform 
the Bayesian Network into a model for system reli-
ability, that is also evaluated for t  sampled with 
step size ts rel, .

4.5  Implementation

The system model as shown in Figure 2 is imple-
mented in Matlab/Simulink. For modeling and 
evaluating Bayesian Networks as model of system 
reliability, Bayes Net Toolbox (BNT) (Murphy et 
al. (2001)) is used. Despite Matlab/Simulink follow-
ing a signal-flow oriented modeling approach, with 
careful modeling, the system topology can be repre-
sented as well. To achieve this, customized subsys-
tems are used to represent system components that 
contain a model of dynamic component behavior.

However, Matlab/Simulink was chosen because 
of the accessibility of toolboxes, e.g. BNT to 
evaluate Bayesian Networks and the possibility to 
implement an algorithm for automatic transforma-
tion of reliability models out of dynamic models.

4.6  System component reliability

The results of a simulation of the clutch system as 
introduced in Sec. 3 is shown in Figure 4. It is carried 
out for a characteristic maneuver, which represents 
an actuation cycle of the clutch system as described 
in detail in Sec. 4.2, after which the component life-
time models are parametrized. Transformation into 
a full system model is omitted.

The following ten system components are taken 
into account for reliability evaluation: driving and 
load motor (Min , Mout), friction plates (Clt), four 
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identical ball bearings with two bearings on each 
shaft connected to the friction plates for drive side 
(Bin1, Bin2) and load side Bout1, Bout2), displacement 
sensor (Dsen), spindle motor (MSp) and spindle 
motor controller (CSp). These components are 
endowed with lifetime models as introduced in 
Sec. 4.2.

The simulation confirms the assumption made 
in Sec. 4.2 for worn out clutch plates R tClt ( ) to be 
the most probable failure mode.

The four identical ball bearings used in the 
assembly differ in reliability according to their 
load. The bearings Bin1 and Bout2 are stressed by 
a constant radial force Fr  due to the required belt 
tension that is applied by the belt tensioning force 
Fbelt. The normal force FN  applied to the friction 
plates to close the clutch stresses only the bear-
ings nearest to the friction plates Bin2 and Bout1 
due to the arrangement of bearings on drive and 
load shaft. However, the radial force Fr  appears to 
be less crucial to bearing reliability (R tBin1

( ) and 
R tBout2

( )) than the axial load due to normal Force 
FN  for R tBin2

( ) and R tBout1
( ).

To automatically construct the system model 
from a topology-oriented dynamic model that was 
augmented with reliability information and lifetime 
models, a dedicated transformation is required.

5  Transformation Algorithm

The transformation algorithm is used to syn-
thesize a model of  system reliability from the 
system model introduced in Sec.  4. The system 
component reliabilities R tC ( ) parametrize a 
Bayesian Network, whose structure is identified 
by performing a Causal Dependency Analysis on 
the dynamic model, which includes the system 
topology.

5.1  Preliminary assumptions

To allow for an automatic transformation of the 
dynamic model into reliability, in addition to the 
parametrization of the system model (Sec.  4.1 
and  4.2), some assumptions regarding the struc-
ture of the system and its functions are required.

Reliability evaluation of complex mechatronic 
systems may take subsystems as one component 
into account, while the dynamic model must simu-
late dynamics of components inside a subsystem 
as well. To setup a reliability model with desired 
granularity, all components to be taken into 
account must be tagged accordingly. Only tagged 
components are used for reliability evaluation, e.g. 
the clutch system components named in Sec. 4.6. 
Despite this, loads used for parametrization of life-
time models are computed using the full dynamic 
model, thus taking the internal subsystem dynam-
ics into account.

In the current implementation of the integrated 
model, redundant components appear only once 
in system dynamics model. The order of compo-
nent redundancy is implemented as a component 
parameter along with m-out-of-n redundancy—a 
redundant system with n components requires at 
least m  of  its components to fulfill its function 
(Birolini (2007)).

A main user input is the definition of the sys-
tem failure the system reliability is evaluated for. 
The system failure is defined as the negation of 
the main function of  the system. In other words, 
we assume that a system is likely to fail if  the main 
function cannot be fulfilled due to component fail-
ure. The main function can be broken down into 
subfunctions, thus forming the function structure 
(Pahl et al. (2007)). For fulfilling each subfunction, 
one or more individual components are required. 
This relationship is not included in dynamic model 
and a true function or component structure cannot 
directly be derived from its topology. However, it 

Figure 3.  Simple Bayesian Network with CPTs used as 
system reliability model.

Figure 4.  Reliability of system components of clutch 
system.
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is possible to annotate the main function to one 
required component and to derive a functional 
component structure from there.

The basic structure of a mechatronic system as 
shown in Figure 5 can be formulated for each func-
tion of a system. It shows all required components 
and signal flows connecting the components for 
a certain function. The flows of energy, informa-
tion and material represent the different kinds of 
signals used in mechatronic systems (Gausemeier 
et al. (2003)). An interruption of any of the signal 
flows, e.g. caused by a component failure, leads to 
a malfunction of the system. Thus, we assume each 
component to be essential for the main function 
and each component failure or failure of redun-
dancy structure to lead to system failure. This 
functional component structure can be created 
using causal depency analysis.

Considering the clutch system, the main func-
tion could be formulated as “transmit torque via 
friction plates”. The main function of the clutch 
system is annotated to the friction plates, which 
connect drive and load side of the test rig.

5.2  Causal dependency analysis

Causal Dependency Analysis is carried out to iden-
tify the structure of Bayesian Network. The causal 
dependencies between functional components 
are explored by tracing the topology of dynamic 
model. It is traced from the component with anno-
tated main function to each component that has a 
direct or indirect connection through other com-
ponents to this root component.

The Causal Dependency Analysis for clutch 
system starting from the friction plates (Clt) as 
main functional component is shown in Figure 6. 
A simplified graph is used to illustrate the signals 
between the tagged components in system dynamic 
model.

The highlighted paths (dashed line) show the 
signals traced by the dependency analysis. It turns 
out that every tagged component is required for 
main function of the system.

5.3  Synthesis of system reliability model

In the Bayesian Network, nodes are set up for all 
identified components and annotated functions. 
The components are used as root nodes of the net-
work with attached binary probability tables P C( ) 
as introduced in Sec.  4.3. Those tables P C( ) are 
filled with a priori probabilities R tC ( ) for operable 
state and 1− R tC ( ) for failed state.

The functions of the evaluated system are also 
introduced as nodes endowed with the states true 
and false. The Conditional Probability Tables 
(CPTs) assigned to those nodes are filled with 
Boolean expressions to model the causal depend-
ency between components and functions. Those 
CPTs can be seen as truth tables that model a logi-
cal disjunction of the relation of components and 
functions. Thus, a parallel structure of the Baye-
sian Network as shown in Figure 7 is evoked.

The clutch system features only one annotated 
function that can be seen as root node MF . The 
nodes connected in parallel to the root node refer 
to the identified components with relevance for the 
main function of the system.

6 Eva luating System Reliability

The evaluation of  the Bayesian Network shown 
in Figure  7 as a model of  system reliability for 

Figure 5.  Basic structure of mechatronic systems 
(Gausemeier, Moehringer, et al. 2003).

Figure 6.  Simplified graph of system dynamics model 
with traced signals.

Figure 7. G raph of Bayesian Network as reliability 
model for clutch system.



2214

node MF  gives its joint probability distribution 
P MF( ). The joint probability for node MF  to be 
in operable state true is interpreted as system reli-
ability and is used equivalently in the following 
sections:

P MF true R tS( ) ( )= ⇔ . 	 (7)

The results of the evaluation of the Bayesian 
Network using the BNT are shown in Figure  7. 
The Bayesian Network is evaluated piecewise for 
t t t tm= , ,...,{ }1 2  as for system component reliability 
R tC ( ) to obtain a reliability curve over operating 
time.

If  system component reliabilities R tC ( ) (Fig. 4) 
are compared to system reliability R tS ( ) (Fig. 8), 
the results appear to be as expected. According to 
(6), the whole system is more likely to fail than its 
individual components at any point in time.

Full system reliability can now be formulated as 
objective function to be optimized together with 
any pre-existing performance objective functions.

7  Reliability-related  
objective function

To formulate a reliability-related objective function 
for use in multi-objective optimization, optimiza-
tion parameters popt  have to be chosen in system 
dynamics model, e.g. controller or component 
geometry parameters, which influence both system 
dynamics and system reliability R tS ( ) as shown in 
Figure  8. The use of lifetime model parameters, 
such as shape parameter b of  distribution func-
tions, as optimization parameters is not feasible as 
these model failure characteristics and are part of 
the reliability-related objective function.

The objective function is formulated as minimi-
zation problem for the probability of system fail-
ure 1− ,R p tS opt i( ) for a certain operating time ti :

min[ ( )]
p S opt i

opt

R p t1− , .
	

(8)

As intermediate step towards minimization of 
failure probability, dynamic loads on system com-
ponents are reduced by having the optimization 
algorithm choose adequate optimization param-
eter values popt  which in turn extend component 
lifetime.

Objective functions that cover system perform-
ance are highly system-specific and are not within 
the scope of this paper. For the clutch system, a 
cost-function was already formulated to evaluate 
system performance (Meyer et al. (2013), Meyer 
and Sextro (2014)). It was found that accelerations, 
i.e. passenger comfort, as performance objective 
and wear as reliability objective contradict one 
another. Working points which yield high comfort 
also lead to high wear, whereas low wear can only 
be achieved if  inferior comfort is accepted.

8  Conclusion

The proposed integrated model for dynamics and 
reliability of mechatronic systems can be used in 
early design phases to ensure reliability as well as 
performance objectives. The influence of com-
ponent changes, control strategies and controller 
parameters on dynamic system behavior and sys-
tem performance can be evaluated at the same time 
as their influence on system reliability.

The integrated system model allows for close 
interaction among dynamic and reliability model 
and eliminates user input while synchronizing 
the two models. It models the interdependency 
between dynamic system behavior and component 
degradation to allow for identification of criti-
cal components according to reliability aspects. 
Synchronization between dynamic and reliabil-
ity model is carried out repeatedly when solving 
multi-objective optimization problem. Based on 
the system model, a transformation algorithm was 
developed to synthesize Bayesian Networks as a 
model of system reliability from system dynamics 
model. The evaluation of system and component 
reliability requires preliminary parametrization, 
but can be used afterwards without further user 
input. Thus, solving a multi-objective optimization 
problem of complex mechatronic systems includ-
ing a reliability-related objective is possible.

The combination of integrated system model 
and multi-objective optimization methods allows 
the computation of several working points Figure 8.  System reliability of clutch system.
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and operating strategies, of which intelligent 
mechatronic system can make use to adapt system 
behavior according to their current situation.

With the current transformation algorithm, a 
flat hierarchy is created for the DAG used in relia-
bility evaluation, making it hard to grasp the model 
structure and validate it manually. This could be 
overcome if  the topology of the dynamic model 
was found in the DAG as well. This way, reliability 
models for subsystems would directly be included 
in the reliability model of the full system.

The limitation of Matlab/Simulink to a sig-
nal flow oriented modeling approach means that 
including the system topology is up to the user and 
prone to errors. This could be overcome by using 
a native topology oriented modelling environment, 
which would then be augmented by our transfor-
mation algorithm.
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