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Abstract—Piezoelectric inertia motors use the inertia of a body
to drive it by means of a friction contact in a series of small steps.
These motors can operate in “stick-slip” or “slip-slip” mode,
with the fundamental frequency of the driving signal ranging
from several Hertz to more than 100 kHz. To predict the motor
characteristics, a Coulomb friction model is sufficient in many
cases, but numerical simulation requires microscopic time steps.
This contribution proposes a much faster simulation technique
using one evaluation per period of the excitation signal. The
proposed technique produces results very close to those of time-
step simulation for ultrasonics inertia motors and allows direct
determination of the steady-state velocity of an inertia motor
from the motion profile of the driving part. Thus it is a useful
simulation technique which can be applied in both analysis and
design of inertia motors, especially for parameter studies and
optimisation.

I. INTRODUCTION

Piezoelectric inertia motors, originally developed for fine
positioning applications in the laboratory [1], [2], [3], have
been applied in several fields in the last years, often in
miniaturised consumer goods [4], [5], [6], [7], [8] because
these motors have a simple construction and are controlled
by a single signal, which allows for low production costs and
simplifies miniaturisation.

Inertia motors use the inertia of a body to drive it by
means of a friction contact in a series of small steps. These
motors are also known as “stick-slip drives” because the steps
are classically regarded to be composed of a phase of static
friction between the driving and the driven part and a phase
where the two parts slide on each other. But inertia motors
can successfully operate also without phases of static friction,
which is known as the “slip-slip” mode. Fig. 1 illustrates this
mode of operation.

Slip-slip operation has been gaining wider recognition in
the last years and some authors [8], [9], [10] have described
inertia motors operating in both stick-slip and slip-slip mode.
The authors of this contribution have recently investigated the
principle advantages, disadvantages und limitations of these
two modes of operation [11], [12], [13]. It was found that the
velocity reachable in stick-slip operation is limited principally,
while slip-slip operation allows much higher velocities with
suitable driving signals.

In the first years of inertia motor development linear saw-
tooth driving signals are dominant, but the ideal driving signal
for maximum velocity produces a parabolic extension of the
actuator followed by an extremely fast contraction [12], [14]

Figure 1. Schematic showing one period of a simple inertia motor operating
in “slip-slip” mode

(“parabolic sawtooth”). Newer developments use rectangular
voltage signals producing sawtooth-like displacement signals
due to the dynamics of the actuator [6], [15], [16], or a
superposition of two sinusoidal signals using resonance am-
plification [10], [17], [18], [19] to form a frequency-limited
sawtooth approximation [11], [13].

The fundamental frequency of the driving signals for inertia
motors ranges from several Hertz to more than 100 kHz
depending on the motor design. Especially motors using
resonance effects are mostly driven at ultrasonic frequencies
and use sliding friction for propulsion.

In many cases, a Coulomb friction model is sufficient for
describing the dynamic behaviour of such motors [20]. But
exact numerical simulation with this simple model requires
appropriate methods and very small time steps, especially if
stiction is to be considered, and is thus computationally ex-
pensive. This contribution proposes a simulation technique on
a macroscopic time-scale which is much faster than classical
microscopic time-scale simulation, shows no instabilities, and
additionally allows direct calculation of the steady-state motor
velocity without simulation of the transient behaviour.

II. EFFICIENT SIMULATION TECHNIQUE

Figure 2 shows a rigid body model of a simple inertia
motor without the piezoelectric actuator. A slider of mass
ms hangs below a driving rod with the inclination angle γ.
The contact force Fc between rod and slider results from the
gravitational force Fg and an external force FM . This force
and an additional force Fx act on the center of gravity C of
the slider. The friction force Ff (t) acts between rod and slider,
xR(t) and xS(t) are the displacements of the two parts. This
model serves as an example for the following considerations.
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Figure 2. Rigid body model of a translational inertia motor

A. Prerequisites and Definitions

The driving part of an inertia motor generally shows a
periodic motion signal. In many cases, especially in motors
designed for high velocity operation which are driven with
high frequency signals, the absolute value of the driving part
acceleration ẍR(t) is almost always larger than the absolute
value of the corresponding break-away acceleration. This is the
acceleration above which the parts would start to slide if they
were sticking to each other before, which means that there
are no phases of stiction with significant length, the motors
operate in slip-slip mode. As an example, fig. 3 shows a typical
acceleration profile.

As there is no phase of stiction, the velocities of driving and
driven part are equal only for infinitely short moments. Two
times are defined: t+p is the time in period p during which
ẋR(t) > ẋS(t), i. e. the driving part has a higher velocity
than the driven part. t−p = T − t+p is the time in period p
during which ẋR(t) < ẋS(t), i. e. the driving part has a lower
velocity than the driven part, where T is the period of the
driving signal.

Assuming Coulomb friction, the friction force can only take
two values in slip-slip mode. Thus, the acceleration of the
driven part is either a+

d or a−d :

a+
d = ẍS(ẋR > ẋS) = −g sin(γ) +

µdFc
mS

+
Fx
mS

(1)

a−d = ẍS(ẋR < ẋS) = −g sin(γ) − µdFc
mS

+
Fx
mS

(2)

Over one period, the total velocity change of the driven part
is then described by

∆v̄S,p = a+
d · t+p + a−d · t−p . (3)

Fig. 4 shows typical velocity signals for driving and driven
part over one period T . Compared to the quickly changing
velocity of the driving part with a fluctuation amplitude of
v̂R, the fluctuation v̂S of the velocity of the driven part is
small. Thus, the velocity of the driven part can be regarded
constant over one period. With this constant v̄S , the values t+p
and t−p depend only on the slider velocity at the beginning of
period p, which equals the end of period p−1. This allows to
define a characteristic function t+(v̄S) which is described by

t+(v̄S) =
1

2
+

1

2T

∫ T

0

sgn (ẋR(t) − v̄S) dt. (4)
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Figure 3. Typical acceleration ẍR(t) of the driving part over one period T
of the excitation signal.
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Figure 4. Typical velocities of driving (ẋR) and driven part (ẋS ) over one
period T in steady state.

From this definition follows:

t+ (v̄S > max (ẋR(t))) = 0 (5)
t+ (v̄S < min (ẋR(t))) = 1 (6)

If there is no interval [t1, t2], with t1 < t2, in which
the velocity of the driving part ẋR(t) is constant, t+(v̄S) is
strictly decreasing and invertible for min (ẋR(t)) ≤ v̄S ≤
max (ẋR(t)). In high-frequency inertia motors, the driving part
is constantly in motion and unless large external forces act
on the driven part, it cannot reach higher velocities than the
driving part. The inverse function v̄S (t+) is thus defined for
any normally operating high-frequency inertia motor.

B. Period-Wise Simulation

With the assumptions discussed above, the change of the
mean velocity of the driven part in period p, ∆v̄S,p = v̄S,p −
v̄S,p−1, can be calculated as

∆v̄S,p = a+
d · t+p (v̄S,p−1) + a−d · t−p (v̄S,p−1) (7)

where v̄S,p is the mean velocity of the slider in period p. The
velocity in any period can thus be calculated sequentially if
the driving frequency 1/T , the starting velocity v̄S,0, and the
characteristic function t+(v̄S) of the driving part motion are
known, using

v̄S,p = v̄S,p−1 + ∆v̄S,p. (8)

C. Direct Calculation of the Steady-State Velocity

High-velocity inertia motors usually require more than one
period to reach their steady state velocity v̄S,∞, if they operate
with a continuously moving slider in slip-slip mode they
approach this velocity asymptotically [12], [13]. The steady
state velocity can easily be determined using the quantities
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introduced above: In steady state, the velocity does not change,
thus ∆v̄S,∞ = 0. From (7) follows for this case:

t+∞ =
a−d

a−d − a+
d

T (9)

Using v̄S(t+), v̄S,∞ can be determined directly if the excita-
tion signal, a−d , and a+

d are known.

D. Implementation

The proposed simulation technique has been implemented
in MATLAB. The given excitation signal ẋR(t) is analysed
to determine the characteristic function t+(v̄S): For nv̄S
equally distributed velocities v̄S between min (ẋR(t)) and
max (ẋR(t)), the fraction of the signal period during which
ẋ(t) > v̄S is calculated. The obtained values of t+/T are
stored in a table together with the corresponding velocity.
For period-wise simulation of the motor motion, the value
of t+/T corresponding to the slider velocity at the beginning
of a period is determined from the stored table using linear
interpolation. A second option is to calculate the exact value
of t+p (v̄S) for each period directly from the excitation signal
without using a lookup table. This option is faster if a small
number of periods is simulated. In both cases, the velocity at
the end of each period is calculated using (7) and (8) and then
used to calculate the velocity change in the next period.

To directly determine the steady state velocity of the motor,
t+∞ is determined using (9) and the corresponding velocity is
determined from the stored table using linear interpolation.

E. Validation and Discussion

In order to validate the proposed simulation technique, it is
first applied to a motor build for fundamental investigations
of friction and inertia motor control in the authors’ lab.
This motor can be driven with arbitrary signals at frequencies
up to some kilohertz. For this investigation, a signal with a
fundamental frequency of 1575 Hz is used with a peak to peak
displacement of the driving part of 25 µm. This signal has
been obtained by approximating a parabolic sawtooth signal
with a limited number of harmonics [13], [11]. The motor is
simulated using time-step simulation with and without stiction
and using the proposed period-wise technique with parameters
identified in previous experiments [21]: mS = 1.4 g, γ = 0°,
Fc = 1 N, Fx = 0 N, µd = 0.16, µs = 0.176. All period-
wise simulations are done with nv̄S = 1024. The average
velocity signal used for determining t+(v̄S) was calculated
over periods 51 to 100, neclecting the first periods after start-
up to exclude transient effects.

The results shown in Fig. 5 show that there is a significant
difference between time-step simulation with and without
stiction. This indicates that the first prerequisite for period-
wise simulation – slip-slip operation – is not fulfilled. This is
also one reason why there is a significant difference between
time-step and period-wise simulation.

Equation (3) shows that in any motor with given a+
d and a−d ,

increasing the frequency linearly decreases the velocity change
per period, as T = t+p +t−p decreases. If the velocity profile of

Figure 5. Time-step and period-wise simulation of an inertia motor operated
at 1/T = 1575 Hz: (a) Measured average velocity ẋR(t) of the driving part
over one period, (b) Characteristic function t+(v̄S)/T , (c) Simulated velocity
ẋS(t), and (d) Simulated displacement xS(t) of the driven part.

the driving part is unchanged, the same relation is true for the
oscillation amplitude v̂S of the velocity of the driven part. An
approximately constant velocity of the driven part is the second
prerequisite for period-wise simulation, so a higher frequency
generally leads to a better fit between time-step and period-
wise simulation. In order to validate this statement for higher
frequencies, three different ultrasonic inertia motors recently
presented in literature are simulated:

1) A motor by Nishimura et al. [10] using a Langevin
transducer driven with two superimposed sine voltages
at 21.6 and 43.2 kHz with a peak to peak displacement
of the driving part of about 28 µm.

2) The translational degree of freedom of a motor by
Tuncdemir et al. [16] driven with a square wave voltage
signal at 58.8 kHz with a peak to peak displacement of
the driving part of about 0.55 µm.

3) A miniature motor by Morita et al. [18] driven with two
superimposed sine voltages at 288.0 and 576.0 kHz with
a peak to peak displacement of the driving part of about
0.45 µm.

The velocity signals of the driving parts are digitised from
figures in the referred publications, the average velocity signal
is then calculated over as many periods as possible from the
published measurements. Values required for the simulation
are taken from the referred publication if possible, otherwise
the values are approximated on the basis of the published
motor design and performance.

The simulation results documented in fig. 6 show that even
though the motors are driven with different frequencies and
amplitudes and show very different steady state velocities and
acceleration phases, the proposed period-wise simulation tech-
nique and time-step simulation produce very similar results
for each motor. The acceleration phase is reproduced almost
perfectly and the calculated steady-state velocities differ by
less than 1 %. The gain in simulation speed highly depends on
the algorithm used for time-step simulation. With nv̄S = 1024,
period-wise simulation in its current implementation is more
than three times faster than a very simple fixed-step algorithm
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1) Motor by Nishimura et al. [10] – given parameters: 1/T = 21.6 kHz, Fc = 1.52 N,
γ = 0; chosen parameters: ms = 5 g, Fx = 0 N , µd = 0.15 (steel-alumina)
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2) Motor by Tuncdemir et al. [16] – given parameters: 1/T = 58.8 kHz, Fx = 4 mN,
γ = 0; chosen parameters: ms = 1 g, Fc = 1 N, µd = 0.2 (brass-plastic)
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3) Motor by Morita et al. [18] – given parameters: 1/T = 288 kHz; chosen

parameters: Fx = 0 N, γ = 0, ms = 1 g, Fc = 1 N, µd = 0.15 (steel-steel)

Figure 6. Time-step and period-wise simulations of three ultrasonic inertia
motors: (a) Average velocity ẋR(t) of the driving part over one period, (b)
Characteristic function t+(v̄S)/T , (c) Simulated velocity ẋS(t), and (d)
Simulated displacement xS(t) of the driven part.

with 1024 points per period and much faster than any sophis-
ticated algorithms considering stiction.

III. CONCLUSIONS

Compared to classic time-step simulation, the proposed
period-wise simulation technique allows significantly faster

simulation of high-frequency inertia motors without any sig-
nificant loss of accuracy. This makes it a useful simulation
technique for analysis, design, and optimisation of inertia mo-
tors. The possibility to determine the steady-state velocity from
the motion profile of the driving part directly is very useful
for parameter studies and for comparison and optimisation of
excitation signals. The characteristic function used in period-
wise simulation is also easy to implement with a lookup table
for microcontrollers, for example for velocity control of inertia
motors in low-cost applications.
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