
1 INTRODUCTION 

1.1 State of the art and motivation 

Rubber-metal-elements are used in a wide range of 
applications for sound isolation and in particular for 
isolating critical components from strong vibrations. 
Typical applications are trains, trucks and wind tur-
bines. The bearing in focus is displayed in figure 1. 
It consists of an inner steel ring, a rubber part and an 
outer steel ring which is slotted. This main part is 
within the outer hollow cylinder which is used in 
combination with the inner bolt for generating a pre-
stress on the rubber part. Nowadays, it is state of the 
art to follow a preventive maintenance strategy han-
dling these bearings. Thereby, the lifetime of the 
bearing needs to be estimated prior to its service life. 
Therefore this lifetime is estimated conservatively 
by the developer based on experience, lifecycle tests 
and the conditions of the planned application. This 
calculation is often based on linear damage accumu-
lation theory (Spitz 2012). A preventive mainte-
nance strategy shows some drawbacks regarding op-
timal utilization of the resource and costs. Moreover, 
today’s industry develops growing expectations con-
cerning efficiency of capabilities and availability. 
That is why condition monitoring gains more and 
more importance in the field of maintenance. 

 
Figure 1. Rubber-metal-bearing. 

1.2 Maintenance strategies 

Maintenance can be divided in different strategies 
according to DIN EN 13306. The oldest strategy is 
the reactive maintenance. Technical systems were 
used until failure and needed to be repaired or re-
placed once they reached their end of lifetime. This 
procedure leads to a couple of problems concerning 
costs and time, for example possible high conse-
quential costs due to unplanned downtime. There-
fore the preventive maintenance strategy was devel-
oped. In that case mechanically lifetimes of 
technical systems are calculated based on experi-
ence, lifecycle tests and fatigue life calculations. 
However, this maintenance strategy does not enable 
exploiting the whole lifetime of a single product. 

A particle filtering approach for temperature based prognostics 

A. Bender & W. Sextro 
Chair of Dynamics and Mechatronics, Paderborn University, Paderborn, Germany 

 

 

 

 
 

ABSTRACT: Rubber-metal-elements are used in a wide range of applications for vibration and sound isola-
tion. Nowadays it is state of the art to calculate the lifetimes of these elements under mechanical stress prior 
to their service life. To establish more reliable and safer rubber-metal-elements, continuous monitoring by dif-
ferent sensors can be used. Especially prognostics enable a rise in reliability, availability and safety. To estab-
lish these advantages, estimating the remaining useful lifetime of rubber-metal-elements should be realized 
during its service life based on current information on its condition. Therefore a suitable measure to monitor 
the condition of the element is necessary. This work focuses on temperature signals. This approach allows in-
cluding the ambient temperature and thereby involving changing operating conditions. For estimating the 
RUL of rubber-metal-elements a model-based prognostics approach based on particle filtering is proposed. Its 
performance is analyzed regarding relevant parameters to enable the best performance for the applied data. 



The calculation is a generalized one that bases on as-
sumptions regarding the expected loads over all 
bearings. Furthermore, safety factors are included in 
the calculations that ensure with a high degree of 
certainty that every product is maintained or re-
placed previously to its end of lifetime. However, 
this strategy provides no information on the current 
state of individual bearings which experience indi-
vidual loads during their lifetime and therefore de-
grade individually. That is why on the one side, pos-
sible early failures could occur and on the other side, 
bearings are replaced although their lifetimes are not 
yet exhausted. These disadvantages of the previous 
named strategies are the reason why the condition 
based maintenance strategy was developed. This 
strategy is mainly based on the condition of the 
product in focus. Using different kind of sensors, in-
formation about the condition of the product is ac-
quired and progressed by condition monitoring 
methods. So, maintenance can be planned optimally 
based on the condition of the product and, in case of 
prognostics, additionally on the estimated remaining 
useful lifetime (RUL), which improves the reliability 
of the product and leads to an optimized efficiency. 

1.3 Structure of the following sections 

In this work the prognostics method which is used to 
estimate the RUL of these rubber-metal-bearings is 
analyzed regarding its performance on temperature 
data of these bearings. The used method is a particle 
filter. Due to the fact that different types of particle 
filters exist (Arulampalam et al. 2002, Jouin et al. 
2016), in chapter 2 the used method is presented re-
garding type correlated differences. Aiming for real-
izing the best RUL prediction for rubber-metal-
bearings, relevant parameters of the method for a 
performance analysis are identified. Chapter 3 fo-
cusses on necessary lifecycle tests and generated da-
ta for developing the condition monitoring system. 
Chapter 4 deals with the analysis of that temperature 
based prognostics. Two different measured values 
are implemented and particle filtering performance 
is analyzed based on varied parameters. In chapter 5 
a conclusion and a short outlook are given. 

2 PROGNOSTICS METHODS 

2.1 Types of particle filter 

Particle filters are Monte Carlo methods that base on 
Bayesian probability theory. These filters are model-
based methods for state estimation that are appropri-
ate for estimating non-linear behavior. Currently, it 
is a classical method for model-based predictions of 
RUL (Jouin et al. 2016). Moreover, particle filters 
create a probabilistic output which can be used to 
present uncertainty involved in RUL predictions. 
Additionally, this method was chosen because a 

multi model particle filter has been successfully ap-
plied to other signals of rubber-metal-elements 
(Bender et al. 2017b, Bender et al. 2017a, Bender et 
al. 2017c). 

These filters can be divided in different types. 
The commonly known ones are Auxiliary particle 
filter, Unscented particle filter, Regularized particle 
filter, Sequential Importance Sampling (SIS) filter 
and Sampling Importance Resampling (SIR) filter 
(Arulampalam et al. 2002). In this work a SIR parti-
cle filter is used for estimating the RUL of rubber-
metal-bearings due to the named advantages and the 
SIR related improvement of particle degeneracy. 
Particle degeneracy is a weakness of the classical 
SIS filter. The SIR particle filter is a further devel-
opment of the SIS filter and prevents that degenera-
cy by resampling. All these Monte Carlo based fil-
ters use random samples that are called particles to 
estimate the state of the monitored product in the 
form of a distribution. Therefore, the samples’ rele-
vance is symbolized by weights. These weights are 
calculated based on a defined distribution and a 
comparison of the predicted and the measured val-
ues. In the case of degeneracy after little iteration 
most of the particle weights tend towards zero while 
only one particle has a bigger weight. That means 
that only one particle builds the base for the state es-
timation and the consecutive estimation of the RUL. 
Nevertheless all particles are still part of the estima-
tion even if their influence on the result tends to-
wards zero. This degeneracy problem can be solved 
by resampling. Thereby only relevant samples sur-
vive which means samples with a higher weight. 
Those samples build the base for the next prognos-
tics step while the probably irrelevant particles are 
no longer considered. In that case a smaller variance 
of samples is used, but the result is more accurate. 
The RUL prediction is an iterative method. As long 
as measured data is available the weights can be up-
dated and resampling can be proceeded 
(Arulampalam et al. 2002, Jouin et al. 2016). 

The general structure of a particle filter is given 
in figure 2. The models are developed based on data 
for training that is presented in chapter 3. Due to the 
complex, nonlinear behavior and multiple ways of 
degradation, no physical model of failure for rubber-
metal-elements exists. Therefore empirical parame-
terized models are implemented. For every dataset 
these parameters are estimated by using Differential 
Evolution, a population based optimization algo-
rithm (Elsayed et al. 2012). So, every model is relat-
ed to one bearing. These models are used within the 
method for state estimation based on samples. 
Therefore a multi model version of a SIR particle fil-
ter is implemented. The general state equation to es-
timate the samples is given in Equation 1 
(Vachtsevanos 2006, Arulampalam et al. 2002) and 
the particular state equation in Equation 2. 
 



 
Figure 2. Structure of a particle filter. 
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where xi is state vector at time ti, mdli‐1 is the model 
with parameters pi‐1,1‐5 and νi is added noise. The 
model parameters are chosen based on the weights 
of the previous state vector. In this version the initial 
samples or initial states are in each case generated 
by one of the models and the first measurement. By 
an appropriate number of samples, model choice is 
equally distributed for the initial sample generation. 
Therefore different numbers of samples are evaluat-
ed in chapter 4. If new measurements are available, 
the estimated states can be corrected through 
resampling. With the aim of estimating the RUL, the 
prediction step is repeated until a given threshold is 
reached by the samples. 

2.2 Relevant parameters 

Variable parameters of a particle filter influence the 
accuracy of prognostics. The parameters to be ana-
lyzed are number of simulations, number of samples, 
the measured values and the resampling strategy. 

Accuracy of particle filter strongly depends on 
the number of particles. That is because it is more 
likely that a big random sample of a defined distri-
bution is able to show a good representation of that 

distribution than a smaller random sample. To show 
the influence of variable number of samples on pre-
dictions of RUL, three possible numbers of samples 
should be compared. In this context the number of 
simulations is analyzed as well. 

The measured values in focus are temperatures 
acquired in or close to the bearing. It was observed 
that the temperature of rubber-metal-bearings 
changes over their lifetime, especially in the end of 
their lifetime. Due to the fact that bearing tempera-
ture is influenced by operating conditions, these 
conditions should be considered. In chapter 4 meas-
urements based on similar conditions are imple-
mented including similar exciter power, similar fre-
quency and similar bearings. Nevertheless, there is 
one parameter that cannot be kept constant, the am-
bient temperature. That is why the ambient tempera-
ture is measured as well. The relative temperature 
ΔT involves both temperatures in the form of a sub-
traction, ΔT = T (bearing) – T (ambient). In the fol-
lowing chapter both measured values, absolute bear-
ing temperature and relative temperature are 
presented. 

To improve the degeneracy problem, resampling 
can be involved in the particle filter. Multiple 
resampling schemes exist (Arulampalam et al. 2002, 
Ignatious, Lincon 2013), in this work the SIR is im-
plemented. One point of interested in this context is 
the question when to resample. Two possibilities are 
compared for the application of rubber-metal-
bearings. The first continuous strategy enables 
resampling in every iteration step which is easy to 
implement but leads to high computational cost. The 
other strategy is based on a defined threshold for 
resampling. In this case resampling is only executed 
if the condition is fulfilled. The realized threshold is 
based on the effective sample size Neff which is a 
measure for degeneracy. The effective sample size 
cannot be computed exactly, therefore an estimate 
෡ܰeff of Neff is used here, see Equation 3. 
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where ωki is the normalized weight (Arulampalam et 
al. 2002). A threshold needs to be defined which al-
lows resampling when ෡ܰeff is smaller than that 
threshold. This resampling strategy needs less com-
putational time because resampling is not realized in 
every iteration step. 

3 LIFECYCLE TESTS 

3.1 Lifecycle tests 

Testing rubber-metal-elements is a complex task. 
Due to their nonlinear behavior and wide distribu-
tions concerning lifetime characteristics of rubber 
caused by manufacturing, lifetime estimation is not 



trivial (Steinweger 2006, Wallmichrath et al. 2009). 
That is why nowadays preventive maintenance 
based on prior calculated lifetimes, often using line-
ar damage accumulation, is state of the art in apply-
ing rubber-metal-elements. 

Due to a lack of real data, lifecycle tests are per-
formed to generate data for prognostics. Here accel-
erated lifecycle tests with an increased excitation 
force are realized because of the long lifetime of 
these bearings. In the suspension system of trains 
they are used for up to 8 years (Bender et al. 2017b). 
These lifecycle tests are performed on a vibration 
analysis system using a hydraulic cylinder as exciter. 
It enables movements of the outer ring of the bear-
ing, whereas the inner ring is fixed. The rubber be-
tween those rings allows a small movement. Under 
this mechanical stress the characteristics of rubber 
change over time due to degradation. Finding a suit-
able measure to monitor a rubber-metal-bearing 
condition is a challenging task due to non-linear 
rubber characteristics and many possible impacts on 
the lifetime of rubber. Moreover, the structure of the 
elements increases the difficulty of installing a sen-
sor for a suitable and reliable measure. In this work 
the focus is on temperature, a measure that is used in 
other applications as well, for example ball bearings 
(Kimotho, Sextro 2015) or subsystems of wind tur-
bines (Crabtree 2011). The correlated concept for 
temperature measurements in rubber-metal-bearings 
is introduced in (Bender et al. 2017c). Based on that 
work, a prototype of a rubber-metal-bearing was de-
veloped that enables temperature measurement in-
side the bearing. Integrating a sensor inside the rub-
ber presents a weakness and could lead to a shorter 
useful lifetime. Moreover, (Molls 2013) showed that 
temperature inside the rubber part of rubber-metal-
bearings have deviations of maximum 3 °C com-
pared to temperature measurements at its surface. 
Therefore, the used thermocouples are placed inside 
the outer ring of the bearing close to the surface of 
the rubber. Little pockets are shaped in the metal, in 
which the thermocouples are bonded. These pockets 
protect the sensible thermocouples from external in-
fluences. Additionally to the absolute temperature of 
the bearing, the ambient temperature is measured 
close to the lifecycle tests. 

3.2 Measurement data 

For temperature measurements sheath thermocou-
ples of type K are inserted in the lifecycle tests that 
are able to monitor the temperature of the bearing. 
Moreover, they are robust to weather the conditions 
of the tests and real applications. Data is measured 
over the whole lifecycle test including data of the 
failure state. Prior to the prediction, the measured 
data is preprocessed for generating empirical mod-
els. As shown before these models are based on a 
combination of e-functions which describes the 

graph of the measurements. The characteristic 
graphs of the absolute temperature of three bearings 
are shown in figure 3 

In the beginning the absolute temperature of bear-
ings raises strongly, before it fluctuates during the 
main part of the life of a bearing. Bearing 2 shows a 
small fall of temperature during that time whereas 
the temperature of bearing 3 stays almost constant. 
In the last part all temperature curves rise until the 
end of lifetime is reached. Analyzing figure 3, it be-
comes obvious that in addition to their common 
characteristics these curves differ in aspects such as 
starting and ending temperature, lifetimes of bear-
ings and the corresponding graph. This has different 
reasons based on characteristics of the bearing and 
operating conditions, especially the ambient temper-
ature. That is why the ambient temperature is in-
volved in the second measured value, the relative 
temperature. The graph of the relative temperature 
for bearing 3 is depicted in figure 4. In general the 
curve of the relative temperature shows similar char-
acteristics like absolute temperature of bearings dur-
ing its lifetime. The significant temperature rise in 
the beginning and in the end is related to the abso-
lute temperature of the bearing. Due to the fact that 
the ambient temperature fluctuates more easily than 
the temperature inside the bearing, the relative tem-
perature fluctuates during the main part of the 
lifecycle test. Moreover a stop of the test after about 
106 cycles leads to a falling temperature because of a 
cooling. After starting the test again the temperature 
of the bearing raises quickly. Due to the similar 
graphs, all models of both measured values base on 
the same state equation, only the parameters differ. 
All in all, the relative temperatures have a more sim-
ilar value range than the absolute temperatures of 
bearing. Therefore the models should fit better and 
might result in an improved prediction. Both meas-
ured values are implemented in the following analy-
sis where the influence of the previously mentioned 
parameters comes under focus. 

 
 

 
Figure 3. Absolute temperatures of bearings during lifecycle 
tests. 
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Figure 4. Relative temperature during lifetime of bearing 3. 

4 ANALYSIS OF PREDICTIONS 

4.1 Test structure 

In this chapter the presented measured values are 
used for estimating the RUL with the presented SIR 
particle filter. To find the best performance different 
parameters shall be implemented and compared. The 
following tests are evaluated on: 
1. Measured values: absolute temperature of bear-

ings and relative temperature 
2. Number of simulations 
3. Number or samples 
4. Resampling strategy including different thresh-

olds 
 

For evaluating the performance a metric based on 
relative error is used. This metric is calculated ana-
logue to Equation 4. 

100%real estimated

real

RUL RUL
Error

RUL


         (4) 

where RULreal is the current RUL of the element and 
RULestimated is the predicted RUL. In this work the 
RUL is estimated for different times from 15 to 
95 % of spent lifetime of the bearings. Thus the error 
is the mean error calculated as the mean of the RULs 
from different times. Thereby positive and negative 
errors compensate each other; therefore the number 
of negative errors is given in brackets to get an im-
pression of the sign of single RULs. As an example 
figure 5 depicts the RULs at the mentioned starting 
times for bearing 1. Illustrated are the real (grey cir-
cles) and the estimated RULs (black squares). The 
dashed lines symbolize an error band of 15 %. Only 
one error is negative (1 N) which is good. Greater 
RULs present a too late prediction and thereby a 
possible unwanted breakdown of the system. The 
parameters used to generate this result are 100 parti-
cles, three simulations, resampling realized in every 
iteration step and the relative temperature as meas-
ured value. 

 
Figure 5. Estimated RUL at different times of bearing 1. 

4.2 Results for bearing temperature 

In this paragraph prognostics base on absolute bear-
ing temperature measurements and the associated 
models. The first parameter of interest is the number 
of simulations. Due to the fact that the SIR particle 
filter is based on probability it is necessary to reach 
a repeatable result within certain limits. To find a 
suitable number of simulations three different alter-
natives between three and 100 simulations are tested 
and the results are displayed for three test bearings 
in table 1. The tests are numbered. An ‘a’ is added to 
the name as a symbol for measured value absolute 
temperature of bearings. 
Table 1 shows that prediction of the RUL of these 
three test bearings do not lead to the same results re-
garding the best number of simulations. Each of the 
bearings shows the best performance for another 
number of simulations. However, the number of 
negative errors differs only slightly for each bearing. 
SIR particle filter are sensitive to outliers 
(Arulampalam et al. 2002), that is why a high num-
ber of simulations is necessary to compensate outli-
ers. To reach valuable results particle based methods 
need a suitable (minimum) number of samples or 
particles. Therefore in the previous simulations 100 
particles were implemented. 
 
Table 1 Influence of number of simulations on prog-
nostics of absolute temperature of bearings 

Test 
No. 

Simu-
lations 

Error (bear-
ing 1) 
in %  

Error (bear-
ing 2) 
in %  

Error (bear-
ing 3) 
in %  

1a 3 12.6 (1 N) -26.0 (17 N) 13.1 (3 N) 
2a 10 15.7 (0 N) -19.1 (17 N) 13.7 (0 N) 
3a 100 14.0 (1 N) -22.6 (17 N) 13.0 (1 N) 

 
For that reason 10 and 100 trails are analyzed again 
for varying number of samples from 100 to 1000 
with the aim of improving the result. The perfor-
mance metrics for the three test bearings are com-
pared in table 2. Again no consistent results over all 
bearings exist. 
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Table 2: Influence of simulations and number of 
samples for absolute temperature of bearings 
Test 
No. 

Simu-
la-
tions 

Number 
of sam-
ples 

Error 
(bearing 
1) 
in % 

Error 
(bearing 
2) 
in % 

Error 
(bearing 
3) 
in % 

2a 10 100 15.7 
(0 N) 

-19.1 
(17 N) 

13.7 
(0 N) 

3a 100 100 14.0 
(1 N) 

-22.6 
(17 N) 

13.0 
(1 N) 

4a 10 500 13.3 
(0 N) 

-24.4 
(17 N) 

10.1 
(1 N) 

5a 100 500 13.5 
(0 N) 

-24.3 
(17 N) 

10.0 
(1 N) 

6a 10 1000 13.6 
(0 N) 

-24.5 
(17 N) 

9.6 
(2 N) 

7a 100 1000 13.4 
(0 N) 

-24.0 
(17 N) 

9.3 
(1 N) 

 
Bearing 3 performs best for 1000 samples, bearing 1 
for more than 100 samples and bearing 2 for 100 
samples. It indicates that especially bearing 2 leads 
to unexpected results. Furthermore, only 2 / 3 of the 
results exhibit a better performance for 100 simula-
tions. This may be related to the small number of 
models. However, the difference between the results 
of variable trails decreases with a growing number 
of samples. To analyze the influence of the number 
of samples and resampling thresholds on the perfor-
mance both parameters are varied in the next step for 
bearing 1. So far a continuous resampling was im-
plemented; in table 3 both resampling strategies are 
realized. The resampling threshold is in a first step 
based on the mean effective sample size measured 
during a continuous resampling strategy. In the fol-
lowing steps it is adapted to the performance metric. 
The chosen number of simulations is ten. 

 
Table 3: Influence of number of samples and 
resampling strategy (bearing 1) for absolute temper-
ature of bearings 
Test No. Number of 

samples 
Resampling 
threshold 

Error 
 
in % 

2a 100 - 15,7 (0 N) 
8a 100 40 13.3 (1 N) 
9a 100 42 13.1 (2 N) 
10a 100 45 15.7 (0 N) 
11a 100 50 12.0 (2 N) 
6a 1000 - 13.6 (0 N) 
12a 1000 390 13.8 (0 N) 
13a 1000 400 14.5 (0 N) 
14a 1000 405 14.1 (0 N) 
15a 1000 410 13.4 (0 N) 
16a 1000 412 15.5 (0 N) 

 
Table 3 underlines that a threshold based resampling 
strategy is able to improve the performance for both 

number of samples. While for 100 particles a thresh-
old of around 50 leads to the best performance, for 
1000 particles a threshold of 410 is the best. A 
threshold based resampling strategy can balance 
worse performance metrics based on a smaller num-
ber of simulations. As table 3 shows, a parameter 
combination of 10 simulations, 1000 samples and a 
threshold of 410 (test 15a) leads to a similar result 
like a parameter combination of 100 simulations, 
1000 samples and a continuous resampling strategy 
(test 7a). In the context of online prognostics this 
could be a great advantage, since less simulations 
and a threshold based resampling strategy need less 
computational cost. However, the error is smaller for 
100 samples, but more sensitive to unwanted nega-
tive prediction errors. 

4.2.1 Results for a further position of measurement 
Molls suggested that the rubber temperature inside 
the rubber changes quite similar to the surface tem-
perature (Molls 2013). The measurements in this 
work show similar temperature behavior between 
the bearing temperature and the temperature meas-
ured at the bolt of a bearing. In figure 6 these two 
temperatures are visualized for bearing 3. 

This leads to the possibility of testing the method 
and the models, based on those of absolute tempera-
ture of bearings, by new bearings whose bolt tem-
peratures are known. The used parameters are 100 
particles, 10 simulations and a resampling threshold 
of 50 effective samples. The resulting errors are 
12.6 % (0 N) for bearing I and 4.0 % (8 N) for bear-
ing II. Figure 7 depicts the result of bearing I. The 
errors are within a 15 % error band or just below it. 
The estimated RULs of bearing II fluctuate stronger 
as the large number of negative errors shows, while 
the mean error of 4.0 % seems to be good. 

These two tests show that temperature measure-
ments close to the rubber-metal-element that have 
similar characteristics could be used for estimating 
RULs in the case of missing bearings’ temperatures. 

 
 

 
Figure 6. Absolute temperature of bearing and bolt temperature 
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Figure 7. Estimated RULs for bolt temperature of new bearing. 

4.3 Results for relative temperature 

In this paragraph predictions based on the relative 
temperature are evaluated. Because of the former re-
sults and the similarities between the two measured 
values, this evaluation is based only on bearing 1. 
The implemented models base on relative tempera-
tures measurements. The structure of this analysis is 
similar to the one in chapter 4.2, the parameters sim-
ulations, number of samples and resampling strategy 
are varied and the performance metric is evaluated. 
In table 4 the influence of the number of simulations 
on the performance of bearing 1 is shown for 100 
particles. The names of the numbered tests for this 
measured value contain an added ‘b’. The error falls 
with increasing number of simulations. The number 
of negative errors is small and nearly constant as be-
fore. The best result is based on 100 simulations that 
is why the predictions shown in table 5 include 100 
simulations. 

 
Table 4 Influence of simulations (bearing 1) for the 
relative temperature 

Test No. Simulations Error 
in % 

1b 3 15.4 (1 N) 
2b 10 12.7 (0 N) 
3b 100 12.4 (0 N) 

 
Table 5: Influence of number of samples (bearing 1) 
for the relative temperature 

Test No. Number of samples Error 
in % 

3b 100 12.4 (0 N) 
4b 500 12.2 (0 N) 
5b 1000 12.0 (0 N) 

 
Table 5 depicts an improved estimation of the RUL 
for an increasing number of samples. The best per-
formance of 12.0 % is predicted for 1000 particles. 

The former good result with less simulations and a 
threshold based resampling (error15a) should be ex-
amined in the next step for the relative temperature. 
Table 6 shows the results for varying resampling 

strategies and thresholds based on 10 simulations 
and 100 or 1000 samples. Similar to table 3 table 6 
presents possible performance improvements based 
on suitable thresholds. Due to the small differences 
regarding the performance metric of different num-
ber of samples, the best performance for 100 and 
1000 samples were evaluated. An error of 12.3 % 
was achieved for a threshold of 45 using 100 sam-
ples. The best threshold of 400 enables an error of 
11.8 % using 1000 samples. Comparing the thresh-
old based results of 1000 particles and 10 simula-
tions (test 9b) to the one of continuous resampling 
with 100 simulations (test 5b), the threshold based 
resampling slightly improves the former results. It 
can be concluded that a threshold based resampling 
can lead to an improvement of the performance of 
the SIR particle filter. At least a saving of computa-
tional time is realized. 

 
Table 6: Influence of resampling strategy (bearing 1) 
for the relative temperature 

Test 
No. 

Number of 
samples 

Resampling 
threshold 

Error 
 
in % 

6b 1000 - 12.5 (0 N) 
7b 1000 390 12.5 (0 N) 
8b 1000 395 12.0 (0 N) 
9b 1000 400 11.8 (0 N) 
10b 1000 405 11.9 (0 N) 
11b 100 45 12.3 (0 N) 

4.4 Comparison of the results 

In this part of chapter 4 the results of the two meas-
ured values are compared. Regarding the number of 
simulations, 100 simulations are less outlier prone 
and therefore lead usually to the best results. Com-
paring the errors, the measured value relative tem-
perature enables better performance regarding the 
number of simulations. While the smallest error re-
lated to absolute temperature of bearing 1 is 14.0 %, 
an error of 12.4 % is related to the relative tempera-
ture of bearing 1. The errors are in most cases re-
duced by an increased number of samples. Once 
again the relative temperature performs better than 
the absolute temperature of bearings (er-
ror5b = 12.0 %, error4a (bearing 1) = 13.3 %). In the 
end the analysis of different resampling strategies 
emphasis that a threshold based resampling with a 
suitable threshold leads to a similar good perfor-
mance with a smaller number of simulations. More-
over, in the case of the relative temperature the per-
formance is slightly improved (error5b = 12.0 %, 
error9b = 11.8 %). 
All in all estimating RUL for rubber-metal-bearings 
is possible based on temperature measurements and 
SIR particle filter for almost constant conditions. In 
reality applied bearings experience variable chang-
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ing conditions, e. g. changing excitation. If the oper-
ation conditions are changed to a great extent, the 
similarity between the measurements will not be 
given. Therefore, implementing or adapting models 
for different excitation forces seems to be necessary. 

5 CONCULSIONS 

In this paper a temperature based estimation of the 
RUL of rubber-metal-bearings is introduced. To 
evaluate and improve the performance of the SIR 
particle filter number of simulations, number of 
samples and resampling strategy are analyzed. The 
predictions base on two different measured values, 
absolute temperature of bearings and relative tem-
perature that includes the ambient temperature and 
absolute temperature of bearings. Predictions based 
on relative temperature show a better performance 
than those based on absolute temperature. The rea-
son lies in bigger differences between temperature 
curves that lead to more variance in the results com-
pared to predictions based on relative temperature. 
Regarding the parameter, on average 10 to 100 trials 
and 1000 particles are a good choice for this applica-
tion. Moreover, both predictions can be improved by 
a threshold based resampling strategy. It can be con-
cluded that even if rubber-metal-bearings show non-
linear behavior and slightly changing characteristics 
a threshold based resampling in combination with a 
suitable threshold enables a relative good RUL esti-
mation based on temperature measurements. 

Open questions are related to the threshold of the 
previous predictions. In this work the end of lifetime 
is defined by the last measurement. Therefore a 
threshold needs to be estimated that marks the end of 
lifetime. Moreover, finding thresholds for effective 
resampling can be optimized. 
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