Enhanced energy harvesting using multiple piezoelectric elements: Theory and experiments (bibtex)
by Waleed Al-Ashtari, Matthias Hunstig, Tobias Hemsel, Walter Sextro
Abstract:
Power and bandwidth of piezoelectric harvesters can be increased by using multiple piezoelectric elements in one harvester. In this contribution, a novel energy harvesting cantilever array with magnetic tuning including three piezoelectric bimorphs is investigated theoretically and experimentally, with a good agreement between model and experiment. Other than harvester designs proposed before, this array is easy to manufacture and insensitive to manufacturing tolerances because its optimum operation frequency can be re-adjusted after fabrication. Using the superposition principle, the Butterworth-Van Dyke model and a mechanical lumped parameters model, the generated voltage and current are determined analytically. Formulas for calculating the power generated by array harvesters with an arbitrary number of piezoelectric elements connected in series or in parallel are derived. It is shown that optimum harvester design must take both the connected load and the operating frequency into account. Strategies for connecting multiple bimorphs to increase the maximum generated power and/or enhance the bandwidth compared to a single bimorph harvester are investigated. For bandwidth enhancement it is essential that individual rectifiers are used for the bimorphs. An example with three bimorphs shows that, depending on the chosen tuning strategy, the power is increased by about 340\% or the bandwidth is increased by about 500\%, compared to one single bimorph.
Reference:
Al-Ashtari, W.; Hunstig, M.; Hemsel, T.; Sextro, W.: Enhanced energy harvesting using multiple piezoelectric elements: Theory and experiments. Sensors and Actuators A: Physical, volume 200, 2013. (Selected Papers from the 9th International Workshop on Piezoelectric Materials and Applications in Actuators)
Bibtex Entry:
@ARTICLE{Al-Ashtari2013a,
  author = {Waleed Al-Ashtari and Matthias Hunstig and Tobias Hemsel and Walter
	Sextro},
  title = {Enhanced energy harvesting using multiple piezoelectric elements:
	Theory and experiments},
  journal = {Sensors and Actuators A: Physical},
  year = {2013},
  volume = {200},
  pages = {138 - 146},
  note = {<ce:title>Selected Papers from the 9th International Workshop on
	Piezoelectric Materials and Applications in Actuators</ce:title>},
  abstract = {Power and bandwidth of piezoelectric harvesters can be increased by
	using multiple piezoelectric elements in one harvester. In this contribution,
	a novel energy harvesting cantilever array with magnetic tuning including
	three piezoelectric bimorphs is investigated theoretically and experimentally,
	with a good agreement between model and experiment. Other than harvester
	designs proposed before, this array is easy to manufacture and insensitive
	to manufacturing tolerances because its optimum operation frequency
	can be re-adjusted after fabrication. Using the superposition principle,
	the Butterworth-Van Dyke model and a mechanical lumped parameters
	model, the generated voltage and current are determined analytically.
	Formulas for calculating the power generated by array harvesters
	with an arbitrary number of piezoelectric elements connected in series
	or in parallel are derived. It is shown that optimum harvester design
	must take both the connected load and the operating frequency into
	account. Strategies for connecting multiple bimorphs to increase
	the maximum generated power and/or enhance the bandwidth compared
	to a single bimorph harvester are investigated. For bandwidth enhancement
	it is essential that individual rectifiers are used for the bimorphs.
	An example with three bimorphs shows that, depending on the chosen
	tuning strategy, the power is increased by about 340\% or the bandwidth
	is increased by about 500\%, compared to one single bimorph.},
  bdsk-url-1 = {http://www.sciencedirect.com/science/article/pii/S0924424713000113},
  bdsk-url-2 = {http://dx.doi.org/10.1016/j.sna.2013.01.008},
  doi = {http://dx.doi.org/10.1016/j.sna.2013.01.008},
  file = {Al-Ashtari2013a.pdf:Al-Ashtari2013a.pdf:PDF},
  keywords = {Energy harvesting; Cantilever array; Bandwidth; Power increase},
  timestamp = {2013.09.26},
  url = {http://www.sciencedirect.com/science/article/pii/S0924424713000113}
}