Quantum Complexity Theory, UPB Summer 2019, Assignment 5

To be completed by: Friday, June 21, start of tutorial

This assignment assumes the notation and terminology from Lecture 6.

1 Exercises

- 1. Local Hamiltonians. Recall that in the NP-complete problem MAX CUT, the input consists of a simple, undirected graph G = (V, E), and a threshold parameter t. The output is to decide whether the maximum cut in G has size at least t. Here, a *cut* in G is a partition $\{V_1, V_2\}$ of V, and the *size* of the cut is the number of edges in E with precisely one endpoint in each of V_1 and V_2 . Give a 2-local Hamiltonian H on n qubits whose ground state energy $\lambda(H)$ equals precisely $|E| \text{OPT}_1$, for OPT_1 the size of the optimal cut in G. (Hint: For each edge $(i, j) \in E$, start by thinking about 2-local quantum constraint $H_{ij} = Z_i \otimes Z_j$; what is the matrix representation of H_{ij} ?)
- 2. Containment of k-LH in QMA.
 - (a) In class, given k-local Hamiltonian $H = \sum_{i=1}^{m} H_i$, we saw how to put k-LH in QMA for $k \in O(1)$ via a simple measurement strategy: Given the ground state $|\psi\rangle$ as a proof, we picked a uniformly random local constraint H_i and measured it (as an observable) against our state $|\psi\rangle$. The expected value of this measurement was $\lambda_{\min}(H)/m$. We then converted this to a high-probability statement via the Höffding bound.

There is, however, a more complicated "off-the-shelf" way of achieving the same containment, which we explore in this question: The phase estimation algorithm. You may assume for this question that $|| H_i ||_{\infty} \leq 1$ for each *i*.

- i. Suppose we could simulate $U = e^{icH}$ perfectly in polynomial time for $c \in O(1/\operatorname{poly}(n))$. Show how to use the quantum phase estimation algorithm (QPE) from Lecture 4 to verify the ground state energy of H in polynomial time. Two points you will need to consider: (1) To which accuracy must the phase be implemented, and how does this affect how many times we call U as a black box? (2) In the NO case (i.e. when $\lambda_{\min}(H) \geq \beta$), why does your approach correctly reject any proof $|\psi\rangle$?
- ii. We are left with the task of simulating $U = e^{icH}$. For simplicity, assume we have $H = H_1 + H_2$ (for H_i each acting on k qubits). A tool we may use for the simulation is the *Trotter formula*, which says that for evolution time $t \in \mathbb{R}^+$,

$$e^{i(H_1+H_2)t} = \left(e^{\frac{iH_1t}{r}}e^{\frac{iH_2t}{r}}\right)^r + O(t^2/r).$$

In other words, we can break up the time evolution as a *product* of evolving H_1 and H_2 independently for short time slices, t/r. The error ϵ so attained (with respect to spectral norm) then scales as $\epsilon \in O(t^2/r)$, assuming $\|e^{ic(H_1+H_2)t}\|_{\infty} \leq 1$ (why does this hold for all $t \in \mathbb{R}$?).

A. Recall that our goal is to simulate $U = e^{ic(H_1+H_2)}$. Since k-LH has an inverse polynomial completeness-soundness gap, it suffices to simulate U to within error $\epsilon := 1/p(n)$ for some sufficiently large polynomial p; call this simulation U_{ϵ} . What choices of t and n suffice to implement U_{ϵ} according to the Trotter formula?

- B. Show how to use the Trotter formula to implement U' for your choice of t and n. (Hint: How many qubits does e^{iH_jt} act on?)
- 3. QMA-hardness of k-LH. This question will get you to work through some of the missing details in the proof of QMA-hardness presented in class. Again, we assume the notation introduced therein.
 - (a) Prove that $\langle \psi_{\text{hist}} | H_{\text{out}} | \psi_{\text{hist}} \rangle = \frac{1}{m+1} \Pr[V \text{ rejects } |\psi\rangle] \leq \frac{\epsilon}{m+1}$ in the YES case.
 - (b) Prove that

$$UH_{\text{prop}}U^{\dagger} = \sum_{t=0}^{m-1} -I \otimes |t+1\rangle \langle t|_{D} - I \otimes |t\rangle \langle t+1|_{D} + I \otimes |t\rangle \langle t|_{D} + I \otimes |t+1\rangle \langle t+1|_{D}.$$

Convince yourself that $UH_{\text{prop}}U^{\dagger} = I_{A,B,C} \otimes \Lambda_D$ indeed has representation

$$\Lambda := \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & \cdots \\ -1 & 2 & -1 & 0 & 0 & \cdots \\ 0 & -1 & 2 & -1 & 0 & \cdots \\ 0 & 0 & -1 & 2 & -1 & \cdots \\ 0 & 0 & 0 & -1 & \ddots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}.$$

(c) In the NO case, prove that $\max_{\substack{|y\rangle \in \text{Null}(H'_{\text{prop}}) \\ \| \|y\rangle \|_2 = 1}} \langle y | \Pi_{N_2} | y \rangle = \frac{m-1}{m+1}.$

(d) In the NO case, prove that $\langle y|\Pi_{N_1} + \Pi_{N_3}|y\rangle \leq \frac{1+\sqrt{\epsilon}}{m+1}$.