
Quantum Complexity Theory, UPB

Summer 2019, Assignment 5

To be completed by: Friday, June 21, start of tutorial

This assignment assumes the notation and terminology from Lecture 6.

1 Exercises

1. Local Hamiltonians. Recall that in the NP-complete problem MAX CUT, the input consists of a
simple, undirected graph G = (V,E), and a threshold parameter t. The output is to decide whether
the maximum cut in G has size at least t. Here, a cut in G is a partition {V1, V2} of V , and the size of
the cut is the number of edges in E with precisely one endpoint in each of V1 and V2. Give a 2-local
Hamiltonian H on n qubits whose ground state energy λ(H) equals precisely |E|−OPT1, for OPT1 the
size of the optimal cut in G. (Hint: For each edge (i, j) ∈ E, start by thinking about 2-local quantum
constraint Hij = Zi ⊗ Zj ; what is the matrix representation of Hij?)

2. Containment of k-LH in QMA.

(a) In class, given k-local Hamiltonian H =
∑m
i=1Hi, we saw how to put k-LH in QMA for k ∈ O(1)

via a simple measurement strategy: Given the ground state |ψ〉 as a proof, we picked a uniformly
random local constraint Hi and measured it (as an observable) against our state |ψ〉. The expected
value of this measurement was λmin(H)/m. We then converted this to a high-probability statement
via the Höffding bound.

There is, however, a more complicated “off-the-shelf” way of achieving the same containment,
which we explore in this question: The phase estimation algorithm. You may assume for this
question that ‖Hi ‖∞ ≤ 1 for each i.

i. Suppose we could simulate U = eicH perfectly in polynomial time for c ∈ O(1/ poly(n)).
Show how to use the quantum phase estimation algorithm (QPE) from Lecture 4 to verify
the ground state energy of H in polynomial time. Two points you will need to consider:
(1) To which accuracy must the phase be implemented, and how does this affect how many
times we call U as a black box? (2) In the NO case (i.e. when λmin(H) ≥ β), why does your
approach correctly reject any proof |ψ〉?

ii. We are left with the task of simulating U = eicH . For simplicity, assume we have H = H1+H2

(for Hi each acting on k qubits). A tool we may use for the simulation is the Trotter formula,
which says that for evolution time t ∈ R+,

ei(H1+H2)t =
(
e

iH1t
r e

iH2t
r

)r
+O(t2/r).

In other words, we can break up the time evolution as a product of evolving H1 and H2

independently for short time slices, t/r. The error ε so attained (with respect to spectral
norm) then scales as ε ∈ O(t2/r), assuming

∥∥ eic(H1+H2)t
∥∥
∞ ≤ 1 (why does this hold for all

t ∈ R?).

A. Recall that our goal is to simulate U = eic(H1+H2). Since k-LH has an inverse polynomial
completeness-soundness gap, it suffices to simulate U to within error ε := 1/p(n) for some
sufficiently large polynomial p; call this simulation Uε. What choices of t and n suffice to
implement Uε according to the Trotter formula?
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B. Show how to use the Trotter formula to implement U ′ for your choice of t and n. (Hint:
How many qubits does eiHjt act on?)

3. QMA-hardness of k-LH. This question will get you to work through some of the missing details in
the proof of QMA-hardness presented in class. Again, we assume the notation introduced therein.

(a) Prove that 〈ψhist|Hout|ψhist〉 = 1
m+1 Pr[V rejects |ψ〉] ≤ ε

m+1 in the YES case.

(b) Prove that

UHpropU
† =

m−1∑
t=0

−I ⊗ |t+ 1〉〈t|D − I ⊗ |t〉〈t+ 1|D + I ⊗ |t〉〈t|D + I ⊗ |t+ 1〉〈t+ 1|D.

Convince yourself that UHpropU
† = IA,B,C ⊗ ΛD indeed has representation

Λ :=



1 −1 0 0 0 · · ·
−1 2 −1 0 0 · · ·
0 −1 2 −1 0 · · ·
0 0 −1 2 −1 · · ·

0 0 0 −1
. . .

. . .
...

...
...

...
. . .

. . .


.

.

(c) In the NO case, prove that max|y〉∈Null(H′
prop)

‖ |y〉 ‖2=1

〈y|ΠN2
|y〉 = m−1

m+1 .

(d) In the NO case, prove that 〈y|ΠN1
+ ΠN3

|y〉 ≤ 1+
√
ε

m+1 .
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