Quantum Complexity Theory, UPB Summer 2019, Assignment 3

To be completed by: Monday, May 20, start of tutorial

1 Exercises

1. BPP versus BQP.

(a) Is $\mathrm{BPP} \subseteq$ PromiseBPP? Is PromiseBPP $\subseteq \mathrm{BPP}$?
(b) A fact that is believed to separate BPP from BQP is the Sipser-Gács-Lautemann theorem, which states that $\mathrm{BPP} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$. Here, Σ_{2}^{p} is the second level of the Polynomial-Time Hierarchy (PH), defined roughly as NP with a second, universally quantified poly-size witness. Slightly more formally, the YES and NO cases of Σ_{2}^{p} are:

- If $x \in L, \exists$ poly-size proof y, such that \forall poly-size proofs z, the verifier accepts (x, y, z).
- If $x \notin L$, then \forall poly-size proofs y, \exists a poly-size proof z, such that the verifier rejects (x, y, z).

In contrast, it is believed that BQP is not contained in any level of PH. (If you have never seen PH before, this would be an excellent excuse to procrastinate via a visit to Wikipedia.) In this exercise, you will prove the Sipser-Gács-Lautemann theorem. For this, you will use the probabilistic method and the union bound, two useful techniques in basic probability theory.

Setup. Let M be a BPP machine for language L. Without loss of generality, assume we have applied standard error reduction so that the completeness and soundness parameters for M are $1-2^{-n}$ and 2^{n}, for $n=|x|$ for $x \in\{0,1\}^{*}$ the input. Also, M takes in m random bits. Define $R_{x} \subseteq\{0,1\}^{m}$ to be set of all random strings r such that M accepts (x, r). Define a translation for R_{x} by string $t \in\{0,1\}^{m}$ as

$$
R_{x} \oplus t=\left\{y \oplus t \mid y \in R_{x}\right\}
$$

for \oplus the bit-wise XOR. Given strings $y_{1}, \ldots, y_{m} \in\{0,1\}^{m}$, define $M\left(y_{1}, \ldots, y_{m}\right)$ to be a modification of M which accepts if its random string r appears in at least one translation of R_{x}, i.e.

$$
r \in R_{x} \oplus y_{i} \text { for some } i \in[m] .
$$

Questions.

i. Prove that if $x \in L$, there exist $y_{1}, \ldots, y_{m} \in\{0,1\}^{m}$ such that for all $r \in\{0,1\}^{m}, M\left(y_{1}, \ldots, y_{m}\right)$ accepts (x, r). (Hint: Use the probabilistic method - pick y_{1}, \ldots, y_{m} uniformly at random, and show that there is non-zero probability the claim holds. For this, first upper bound the probability that r is not in one of the translations defined by the y_{i}. Then look up the union bound/Boole's inequality.)
ii. If $x \notin L$, for all $y_{1}, \ldots, y_{m} \in\{0,1\}^{m}$, there exists $r \in\{0,1\}^{m}$, such that $M\left(y_{1}, \ldots, y_{m}\right)$ rejects (x, r). (Hint: A straightforward bound will work here, thanks to the fact that you assumed an exponentially small soundness parameter.)
iii. Why do the previous two exercises together show $\mathrm{BPP} \subseteq \Sigma_{2}^{p}$?
2. Perturbations to quantum gate sequences. Prove Lemma 7 of the Lecture 3 notes.
3. Quantum eigenvalue surgery. Assume $A \in \operatorname{Pos}\left(\mathbb{C}^{N}\right)$ is a positive semidefinite, s-sparse matrix satisfying $\|A\|_{\infty} \leq 1$, and that you have a black box preparing state $|b\rangle \in \mathbb{C}^{N}$. Assume further that all eigenvalues λ_{j} of A require at most n bits to represent, for some integer $n>0$. Show how to use quantum eigenvalue surgery to probabilistically simulate operation $\sqrt{A}|b\rangle$. You may assume all operations are error-free (other than the fact that postselection can fail, as in the course notes). Give a bound on success probability (in terms of $\lambda_{\min }(A)$) and runtime. (Bonus: What if A is unitary instead?)

