
Quantum Complexity Theory, UPB

Summer 2019, Assignment 3

To be completed by: Monday, May 20, start of tutorial

1 Exercises

1. BPP versus BQP.

(a) Is BPP ⊆ PromiseBPP? Is PromiseBPP ⊆ BPP?

(b) A fact that is believed to separate BPP from BQP is the Sipser-Gács-Lautemann theorem, which
states that BPP ⊆ Σp

2 ∩ Πp
2. Here, Σp

2 is the second level of the Polynomial-Time Hierarchy
(PH), defined roughly as NP with a second, universally quantified poly-size witness. Slightly
more formally, the YES and NO cases of Σp

2 are:

• If x ∈ L, ∃ poly-size proof y, such that ∀ poly-size proofs z, the verifier accepts (x, y, z).

• If x 6∈ L, then ∀ poly-size proofs y, ∃ a poly-size proof z, such that the verifier rejects (x, y, z).

In contrast, it is believed that BQP is not contained in any level of PH. (If you have never
seen PH before, this would be an excellent excuse to procrastinate via a visit to Wikipedia.)
In this exercise, you will prove the Sipser-Gács-Lautemann theorem. For this, you will use the
probabilistic method and the union bound, two useful techniques in basic probability theory.

Setup. Let M be a BPP machine for language L. Without loss of generality, assume we have
applied standard error reduction so that the completeness and soundness parameters for M are
1 − 2−n and 2n, for n = |x| for x ∈ {0, 1}∗ the input. Also, M takes in m random bits. Define
Rx ⊆ {0, 1}m to be set of all random strings r such that M accepts (x, r). Define a translation
for Rx by string t ∈ {0, 1}m as

Rx ⊕ t = {y ⊕ t | y ∈ Rx},

for ⊕ the bit-wise XOR. Given strings y1, . . . , ym ∈ {0, 1}m, define M(y1, . . . , ym) to be a mod-
ification of M which accepts if its random string r appears in at least one translation of Rx,
i.e.

r ∈ Rx ⊕ yi for some i ∈ [m].

Questions.

i. Prove that if x ∈ L, there exist y1, . . . , ym ∈ {0, 1}m such that for all r ∈ {0, 1}m, M(y1, . . . , ym)
accepts (x, r). (Hint: Use the probabilistic method — pick y1, . . . , ym uniformly at random,
and show that there is non-zero probability the claim holds. For this, first upper bound the
probability that r is not in one of the translations defined by the yi. Then look up the union
bound/Boole’s inequality.)

ii. If x 6∈ L, for all y1, . . . , ym ∈ {0, 1}m, there exists r ∈ {0, 1}m, such that M(y1, . . . , ym) rejects
(x, r). (Hint: A straightforward bound will work here, thanks to the fact that you assumed
an exponentially small soundness parameter.)

iii. Why do the previous two exercises together show BPP ⊆ Σp
2?

2. Perturbations to quantum gate sequences. Prove Lemma 7 of the Lecture 3 notes.
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3. Quantum eigenvalue surgery. Assume A ∈ Pos
(
CN

)
is a positive semidefinite, s-sparse matrix

satisfying ‖A ‖∞ ≤ 1, and that you have a black box preparing state |b〉 ∈ CN . Assume further that
all eigenvalues λj of A require at most n bits to represent, for some integer n > 0. Show how to

use quantum eigenvalue surgery to probabilistically simulate operation
√
A|b〉. You may assume all

operations are error-free (other than the fact that postselection can fail, as in the course notes). Give
a bound on success probability (in terms of λmin(A)) and runtime. (Bonus: What if A is unitary
instead?)
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